A High-Order Local Projection Stabilization Method for Natural Convection Problems

In this paper, we propose a local projection stabilization (LPS) finite element method applied to numerically solve natural convection problems. This method replaces the projection-stabilized structure of standard LPS methods by an interpolation-stabilized structure, which only acts on the high frequencies components of the flow. This approach gives rise to a method which may be cast in the variational multi-scale framework, and constitutes a low-cost, accurate solver (of optimal error order) for incompressible flows, despite being only weakly consistent. Numerical simulations and results for the buoyancy-driven airflow in a square cavity with differentially heated side walls at high Rayleigh numbers (up to $$Ra=10^7$$Ra=107) are given and compared with benchmark solutions. Good accuracy is obtained with relatively coarse grids.

[1]  Jean-Marie Emmanuel Bernard Density results in sobolev spaces whose elements vanish on a part of the boundary , 2011 .

[2]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[3]  Hehu Xie,et al.  Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion-reaction problems , 2011 .

[4]  Giovanni P. Galdi,et al.  An Introduction to the Navier-Stokes Initial-Boundary Value Problem , 2000 .

[5]  Tomás Chacón Rebollo A term by term stabilization algorithm for finite element solution of incompressible flow problems , 1998 .

[6]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[7]  Mehrdad T. Manzari,et al.  An explicit finite element algorithm for convection heat transfer problems , 1999 .

[8]  Vivette Girault,et al.  A reduced discrete inf-sup condition in Lp for incompressible flows and application , 2015 .

[9]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[10]  William Layton,et al.  Error analysis for finite element methods for steady natural convection problems , 1990 .

[11]  Frédéric Valentin,et al.  Consistent Local Projection Stabilized Finite Element Methods , 2010, SIAM J. Numer. Anal..

[12]  G. D. Davis Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .

[13]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[14]  R. L. Sani,et al.  Solution of the time-dependent incompressible Navier-Stokes and Boussinesq equations using the Galerkin finite element method , 1980 .

[15]  Miguel A. Fernández,et al.  Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence , 2007, Numerische Mathematik.

[16]  Petr Knobloch A Generalization of the Local Projection Stabilization for Convection-Diffusion-Reaction Equations , 2010, SIAM J. Numer. Anal..

[17]  Ramon Codina,et al.  Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modeling , 2010 .

[18]  P. Rabinowitz,et al.  Existence and nonuniqueness of rectangular solutions of the Bénard problem , 1968 .

[19]  William Layton,et al.  An analysis of the finite element method for natural convection problems , 1990 .

[20]  Cornelius O. Horgan,et al.  Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..

[21]  Petr Knobloch,et al.  Local projection stabilization for advection--diffusion--reaction problems: One-level vs. two-level approach , 2009 .

[22]  Macarena Gómez Mármol,et al.  Numerical analysis of a finite element projection-based VMS turbulence model with wall laws , 2015 .

[23]  Decheng Wan,et al.  A NEW BENCHMARK QUALITY SOLUTION FOR THE BUOYANCY-DRIVEN CAVITY BY DISCRETE SINGULAR CONVOLUTION , 2001 .

[24]  Daniel Arndt,et al.  Local projection stabilization for the Oseen problem , 2016 .

[25]  T. Chacón Rebollo,et al.  Numerical Analysis of Penalty Stabilized Finite Element Discretizations of Evolution Navier–Stokes Equations , 2015, J. Sci. Comput..

[26]  Roger Lewandowski,et al.  Mathematical and Numerical Foundations of Turbulence Models and Applications , 2014 .

[27]  H. Schlichting Boundary Layer Theory , 1955 .

[28]  Yanren Hou,et al.  Error analysis of a fully discrete finite element variational multiscale method for the natural convection problem , 2014, Comput. Math. Appl..

[29]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[30]  Lutz Tobiska,et al.  The two-level local projection stabilization as an enriched one-level approach , 2012, Adv. Comput. Math..

[31]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[32]  Gunar Matthies,et al.  Local projection type stabilization applied to inf–sup stable discretizations of the Oseen problem , 2015 .

[33]  Gabriel R. Barrenechea,et al.  A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations , 2012 .

[34]  Ramon Codina,et al.  Dynamic subscales in the finite element approximation of thermally coupled incompressible flows , 2007 .

[35]  Vivette Girault,et al.  A high order term-by-term stabilization solver for incompressible flow problems , 2013 .

[36]  Daniel Arndt,et al.  Local projection FEM stabilization for the time‐dependent incompressible Navier–Stokes problem , 2015 .

[37]  Volker John,et al.  A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows , 2015 .

[38]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[39]  Songul Kaya,et al.  A projection-based stabilized finite element method for steady-state natural convection problem , 2011 .

[40]  Li-Bin Liu,et al.  A Robust Adaptive Grid Method for a System of Two Singularly Perturbed Convection-Diffusion Equations with Weak Coupling , 2014, J. Sci. Comput..

[41]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[42]  Roland Becker,et al.  A Two-Level Stabilization Scheme for the Navier-Stokes Equations , 2004 .

[43]  O. C. Zienkiewicz,et al.  Characteristic‐based‐split (CBS) algorithm for incompressible flow problems with heat transfer , 1998 .

[44]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[45]  M. Benítez,et al.  A second order characteristics finite element scheme for natural convection problems , 2011, J. Comput. Appl. Math..

[46]  Christine Bernardi,et al.  Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .

[47]  Gunar Matthies,et al.  Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. , 2008 .

[48]  Johannes Löwe,et al.  A Projection-Based Variational Multiscale Method for Large-Eddy Simulation with Application to Non-Isothermal Free Convection Problems , 2012 .

[49]  Frédéric Hecht,et al.  Numerical approximation of the Smagorinsky turbulence model applied to the primitive equations of the ocean , 2014, Math. Comput. Simul..

[50]  Macarena Gómez Mármol,et al.  Finite Element Approximation of an Unsteady Projection-Based VMS Turbulence Model with Wall Laws , 2015 .

[51]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[52]  Volker John,et al.  Analysis of a full space-time discretization of the Navier-Stokes equations by a local projection stabilization method , 2015 .