11 Industrial Production of Double-Layer Capacitors

[1]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[2]  Michael Holzapfel,et al.  An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite , 2006 .

[3]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[4]  Larry A. Viterna Hybrid Electric Transit Bus , 1997 .

[5]  R. Gallay,et al.  Pressure evolution in propylene carbonate based electrochemical double layer capacitors , 2006 .

[6]  P. Venet,et al.  Thermal simulation for geometric optimization of metallized polypropylene film capacitors , 2002 .

[7]  Mark W. Verbrugge,et al.  Analytic Solutions and Experimental Data for Cyclic Voltammetry and Constant-Power Operation of Capacitors Consistent with HEV Applications , 2006 .

[8]  R. Gallay,et al.  Carbon based double layer capacitors with aprotic electrolyte solutions: the possible role of intercalation/insertion processes , 2006 .

[9]  P. Delahay,et al.  Advances in Electrochemistry and Electrochemical Engineering , 1964 .

[10]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[11]  Marketa Zukalova,et al.  Interaction of nanodiamond with in situ generated sp-carbon chains probed by Raman spectroscopy , 2006 .

[12]  Fritz Stoeckli,et al.  The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons , 2006 .

[13]  I. Tanahashi,et al.  COMPARISON OF THE ELECTROCHEMICAL PROPERTIES OF ELECTRIC DOUBLE-LAYER CAPACITORS WITH AN AQUEOUS ELECTROLYTE AND WITH A NONAQUEOUS ELECTROLYTE , 1990 .

[14]  A. Yoshida,et al.  An electric double-layer capacitor with high capacitance and low resistance , 1991 .

[15]  F. Béguin,et al.  High-voltage asymmetric supercapacitors operating in aqueous electrolyte , 2006 .

[16]  Hamid Gualous,et al.  Frequency, thermal and voltage supercapacitor characterization and modeling , 2007 .

[17]  R. Kötz,et al.  Correlation between capacitances of porous carbons in acidic and aprotic EDLC electrolytes , 2007 .

[18]  Jim P. Zheng,et al.  The Effect of Salt Concentration in Electrolytes on the Maximum Energy Storage for Double Layer Capacitors , 1997 .

[19]  A. Soffer,et al.  Double Layer Capacitance and Charging Rate of Ultramicroporous Carbon Electrodes , 1977 .

[20]  Philipp Dietrich,et al.  Voltage balancing: Long-term experience with the 250 V supercapacitor module of the hybrid fuel cell vehicle HY-LIGHT , 2007 .

[21]  S. Rael,et al.  A physical based model of power electric double-layer supercapacitors , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[22]  R. Gallay,et al.  Capacitance Characterization Methods and Ageing Behaviour of Supercapacitors , 2005 .

[23]  Jaan Leis,et al.  The advanced carbide-derived carbon based supercapacitor , 2006 .

[24]  Jean-Michel Vinassa,et al.  Specification and use of pulsed current profiles for ultracapacitors power cycling , 2005, Microelectron. Reliab..

[25]  Makoto Ue,et al.  Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double‐Layer Capacitors , 1994 .

[26]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[27]  Philippe Azaïs Recherche des causes du vieillissement de supercondensateurs à électrolyte organique à base de carbones activés , 2003 .

[28]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[29]  Hamid Gualous,et al.  Experimental study of supercapacitor serial resistance and capacitance variations with temperature , 2003 .

[30]  S. Prabaharan,et al.  High voltage electrochemical double layer capacitors using conductive carbons as additives , 2004 .

[31]  Derek J. Fray,et al.  Achieving high electrode specific capacitance with materials of low mass specific capacitance : Potentiostatically grown thick micro-nanoporous PEDOT films , 2007 .

[32]  Alfred Rufer,et al.  Power-Electronic Interface for a Supercapacitor-Based Energy-Storage Substation in DC-Transportation Networks , 2003 .

[33]  P. Kurzweil,et al.  A new monitoring method for electrochemical aggregates by impedance spectroscopy , 2004 .

[34]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[35]  Doron Aurbach,et al.  Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions , 2000 .

[36]  R. Gallay,et al.  HY.POWER - A Fuel Cell Car Boosted with Supercapacitors , 2002 .

[37]  A. Balducci,et al.  The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors , 2006 .

[38]  Mark W. Verbrugge,et al.  Microstructural Analysis and Mathematical Modeling of Electric Double-Layer Supercapacitors , 2005 .

[39]  R. Kötz,et al.  Temperature behavior and impedance fundamentals of supercapacitors , 2006 .

[40]  Nasser Kutkut,et al.  Dynamic equalization techniques for series battery stacks , 1996, Proceedings of Intelec'96 - International Telecommunications Energy Conference.

[41]  D. Aurbach,et al.  Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors , 2006 .

[42]  F. Lufrano,et al.  A study of the electrochemical behaviour of electrodes in operating solid-state supercapacitors , 2007 .

[43]  R. Gallay,et al.  A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain , 2006 .

[44]  Jean-Michel Vinassa,et al.  First step in the reliability assessment of ultracapacitors used as power source in hybrid electric vehicles , 2004, Microelectron. Reliab..

[45]  Dolores Lozano-Castelló,et al.  ROLE OF SURFACE CHEMISTRY ON ELECTRIC DOUBLE LAYER CAPACITANCE OF CARBON MATERIALS , 2005 .

[46]  F. Béguin,et al.  Supercapacitors based on conducting polymers/nanotubes composites , 2006 .

[47]  Roger A. Dougal,et al.  Ultracapacitor model with automatic order selection and capacity scaling for dynamic system simulation , 2004 .

[48]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[49]  F. Béguin,et al.  Solvent-free ionic liquids as in situ probes for assessing the effect of ion size on the performance of electrical double layer capacitors , 2006 .

[50]  D. Bélanger,et al.  Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors , 2006 .

[51]  J. Goldman,et al.  Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications , 1999 .

[52]  Andreas Züttel,et al.  Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials , 2003 .

[53]  Mark W. Verbrugge,et al.  Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors , 2006 .

[54]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[55]  Roy Peter Richner Entwicklung neuartig gebundener Kohlenstoffmaterialien für elektrische Doppelschichtkondensatorelektroden , 2001 .