Is Randomness native to Computer Science? Ten Years Later

2 What we have learned? A personal pick 4 2.1 From randomness to complexity . . . . . . . . . . . . . . . . . . . . . 4 2.2 Formalization of randomness: infinite strings . . . . . . . . . . . . . 5 2.3 Random versus lawless . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Randomness and finite strings: incompressibility . . . . . . . . . . . 7 2.5 Representation and Kolmogorov complexity . . . . . . . . . . . . . . 8 2.6 Prefix-freeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.7 Approximating randomness and Kolmogorov complexity . . . . . . . 11

[1]  Péter Gács,et al.  Every Sequence Is Reducible to a Random One , 1986, Inf. Control..

[2]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .

[3]  Claude E. Shannon,et al.  Mathematical Theory of the Differential Analyzer , 1941 .

[4]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[5]  Yuri Gurevich,et al.  Evolving Algebras: an Attempt to Discover Semantics , 1993, Current Trends in Theoretical Computer Science.

[6]  Daniel S. Graça,et al.  Computability with polynomial differential equations , 2008, Adv. Appl. Math..

[7]  Claus-Peter Schnorr,et al.  The process complexity and effective random tests. , 1972, STOC.

[8]  G. Frege Über Sinn und Bedeutung , 1892 .

[9]  E. F. Codd,et al.  The Relational Model for Database Management, Version 2 , 1990 .

[10]  Claus-Peter Schnorr,et al.  Process complexity and effective random tests , 1973 .

[11]  Paul M. B. Vitányi,et al.  Clustering by compression , 2003, IEEE Transactions on Information Theory.

[12]  Olivier Bournez,et al.  Polynomial differential equations compute all real computable functions on computable compact intervals , 2007, J. Complex..

[13]  Verónica Becher,et al.  Random reals à la Chaitin with or without prefix-freeness , 2007, Theor. Comput. Sci..

[14]  Marie Ferbus-Zanda,et al.  Kolmogorov complexity in perspective , 2008, ArXiv.

[15]  Peter Gacs,et al.  Lecture notes on descriptional complexity and randomness , 2014, ArXiv.

[16]  Joan Rand Moschovakis,et al.  Relative lawlessness in intuitionistic analysis , 1987, The Journal of Symbolic Logic.

[17]  Claus-Peter Schnorr,et al.  A unified approach to the definition of random sequences , 1971, Mathematical systems theory.

[18]  Sandy Lovie Shannon, Claude E , 2005 .

[19]  Liang Yu,et al.  On initial segment complexity and degrees of randomness , 2008 .

[20]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[21]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[22]  Marie Ferbus-Zanda,et al.  Is Randomness "Native" to Computer Science? , 2008, Bull. EATCS.

[23]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[24]  Joan Rand Moschovakis,et al.  More about relatively lawless sequences , 1994, Journal of Symbolic Logic.

[25]  Wolfgang Merkle,et al.  Reconciling Data Compression and Kolmogorov Complexity , 2007, ICALP.

[26]  Wolfgang Merkle,et al.  A Simple Proof of Miller-Yu Theorem , 2008, Fundam. Informaticae.

[27]  Marie Ferbus-Zanda,et al.  Kolmogorov complexity and set theoretical representations of integers , 2006, Math. Log. Q..

[28]  Marie Ferbus-Zanda,et al.  Kolmogorov Complexity in perspective. Part I: Information Theory and Randomnes , 2010, ArXiv.

[29]  Santiago Figueira,et al.  Randomness and halting probabilities , 2006, Journal of Symbolic Logic.

[30]  Marie Ferbus-Zanda,et al.  Kolmogorov Complexity in perspective. Part II: Classification, Information Processing and Duality , 2010, ArXiv.