Is Randomness native to Computer Science? Ten Years Later
暂无分享,去创建一个
[1] Péter Gács,et al. Every Sequence Is Reducible to a Random One , 1986, Inf. Control..
[2] Gottlob Frege,et al. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .
[3] Claude E. Shannon,et al. Mathematical Theory of the Differential Analyzer , 1941 .
[4] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[5] Yuri Gurevich,et al. Evolving Algebras: an Attempt to Discover Semantics , 1993, Current Trends in Theoretical Computer Science.
[6] Daniel S. Graça,et al. Computability with polynomial differential equations , 2008, Adv. Appl. Math..
[7] Claus-Peter Schnorr,et al. The process complexity and effective random tests. , 1972, STOC.
[8] G. Frege. Über Sinn und Bedeutung , 1892 .
[9] E. F. Codd,et al. The Relational Model for Database Management, Version 2 , 1990 .
[10] Claus-Peter Schnorr,et al. Process complexity and effective random tests , 1973 .
[11] Paul M. B. Vitányi,et al. Clustering by compression , 2003, IEEE Transactions on Information Theory.
[12] Olivier Bournez,et al. Polynomial differential equations compute all real computable functions on computable compact intervals , 2007, J. Complex..
[13] Verónica Becher,et al. Random reals à la Chaitin with or without prefix-freeness , 2007, Theor. Comput. Sci..
[14] Marie Ferbus-Zanda,et al. Kolmogorov complexity in perspective , 2008, ArXiv.
[15] Peter Gacs,et al. Lecture notes on descriptional complexity and randomness , 2014, ArXiv.
[16] Joan Rand Moschovakis,et al. Relative lawlessness in intuitionistic analysis , 1987, The Journal of Symbolic Logic.
[17] Claus-Peter Schnorr,et al. A unified approach to the definition of random sequences , 1971, Mathematical systems theory.
[18] Sandy Lovie. Shannon, Claude E , 2005 .
[19] Liang Yu,et al. On initial segment complexity and degrees of randomness , 2008 .
[20] A. Kolmogorov. Three approaches to the quantitative definition of information , 1968 .
[21] A. N. Kolmogorov,et al. Foundations of the theory of probability , 1960 .
[22] Marie Ferbus-Zanda,et al. Is Randomness "Native" to Computer Science? , 2008, Bull. EATCS.
[23] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[24] Joan Rand Moschovakis,et al. More about relatively lawless sequences , 1994, Journal of Symbolic Logic.
[25] Wolfgang Merkle,et al. Reconciling Data Compression and Kolmogorov Complexity , 2007, ICALP.
[26] Wolfgang Merkle,et al. A Simple Proof of Miller-Yu Theorem , 2008, Fundam. Informaticae.
[27] Marie Ferbus-Zanda,et al. Kolmogorov complexity and set theoretical representations of integers , 2006, Math. Log. Q..
[28] Marie Ferbus-Zanda,et al. Kolmogorov Complexity in perspective. Part I: Information Theory and Randomnes , 2010, ArXiv.
[29] Santiago Figueira,et al. Randomness and halting probabilities , 2006, Journal of Symbolic Logic.
[30] Marie Ferbus-Zanda,et al. Kolmogorov Complexity in perspective. Part II: Classification, Information Processing and Duality , 2010, ArXiv.