Surface hydride formation on a metal oxide surface: the interaction of atomic hydrogen with Cu2O(100)

[1]  D. Cox,et al.  Propene adsorption on Cu2O single-crystal surfaces , 1992 .

[2]  D. Cox,et al.  H2O adsorption on Cu2O(100) , 1991 .

[3]  B. Hayden,et al.  Vibrational and translational energy partition and the barrier to dissociative H2 and D2 adsorption on Cu(110) , 1991 .

[4]  Cox,et al.  Photoemission and low-energy-electron-diffraction study of clean and oxygen-dosed Cu2O (111) and (100) surfaces. , 1991, Physical review. B, Condensed matter.

[5]  J. Vohs,et al.  Structure sensitivity, selectivity, and adsorbed intermediates in the reactions of acetone and 2-propanol on the polar surfaces of zinc oxide , 1991 .

[6]  A. Winkler,et al.  A SEARCH FOR VIBRATIONAL CONTRIBUTIONS TO THE ACTIVATED ADSORPTION OF H2 ON COPPER , 1990 .

[7]  J. Vohs,et al.  Dehydration and dehydrogenation of ethanol and 1-propanol on the polar surfaces of zinc oxide , 1989 .

[8]  Hayden,et al.  Coupled translational-vibrational activation in dissociative hydrogen adsorption on Cu(110). , 1989, Physical review letters.

[9]  J. Vohs,et al.  Reaction pathways and intermediates in the decomposition of acetic and propionic acids on the polar surfaces of zinc oxide , 1988 .

[10]  Patricia A. Thiel,et al.  The interaction of water with solid surfaces: Fundamental aspects , 1987 .

[11]  J. Vohs,et al.  Conversion of methanol, formaldehyde and formic acid on the polar faces of zinc oxide , 1986 .

[12]  T. Ramanarayanan,et al.  Oxidation of copper and reduction of Cu2O in an environmental scanning electron microscope at 800°C , 1985 .

[13]  W. Göpel,et al.  Intrinsic defects of Ti O 2 (110): Interaction with chemisorbed O 2 , H 2 , CO, and C O 2 , 1983 .

[14]  J. Robertson Electronic structure and x-ray near-edge core spectra of Cu 2 O , 1983 .

[15]  J. Cunningham,et al.  XPS and XAES studies of transient enhancement of Cu1 at CuO surfaces during vacuum outgassing , 1983 .

[16]  P. Stair The concept of Lewis acids and bases applied to surfaces , 1982 .

[17]  J. Yates,et al.  Adsorption studies of H2 isotopes on ZnO: Coverage‐induced IR frequency shifts and adsorbate geometry , 1982 .

[18]  J. Gilles,et al.  Influence of the surface reconstruction on the work function and surface conductance of (110)SnO2 , 1982 .

[19]  J. Loison,et al.  Progress in melt growth of Cu2O , 1980 .

[20]  M. Knotek Characterization of hydrogen species on metal-oxide surfaces by electron-stimulated desorption: TiO2 and SrTiO3 , 1980 .

[21]  R. Hoffmann,et al.  Copper(I)-copper(I) interactions. Bonding relationships in d10-d10 systems , 1978 .

[22]  M. Balooch,et al.  Molecular beam study of the apparent activation barrier associated with adsorption and desorption of hydrogen on copper , 1974 .

[23]  B. Wood,et al.  Selectivity and stoichiometry of copper oxide in propylene oxidation , 1969 .

[24]  C. D. Wagner,et al.  Mechanism of propylene oxidation over cuprous oxide , 1963 .

[25]  J. Gilles,et al.  Surface reconstructions of the SnO2 (110) face , 1981 .

[26]  C. Benndorf,et al.  Identification of Cu(I) and Cu(II) oxides by electron spectroscopic methods: AES, ELS and UPS investigations , 1980 .

[27]  J. Collman,et al.  Principles and applications of organotransition metal chemistry , 1980 .

[28]  J. Pritchard,et al.  Chemisorption of hydrogen on evaporated copper films , 1972 .