Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments

In this paper, we compare different metrics to predict the error rate of optical systems based on nonbinary forward error correction (FEC). It is shown that an accurate metric to predict the performance of coded modulation based on nonbinary FEC is the mutual information. The accuracy of the prediction is verified in a detailed example with multiple constellation formats and FEC overheads, in both simulations and optical transmission experiments over a recirculating loop. It is shown that the employed FEC codes must be universal if performance prediction based on thresholds is used. A tutorial introduction into the computation of the thresholds from optical transmission measurements is also given.

[1]  P. Poggiolini The GN Model of Non-Linear Propagation in Uncompensated Coherent Optical Systems , 2012, Journal of Lightwave Technology.

[2]  Xiaodong Li,et al.  Bit-interleaved coded modulation with iterative decoding , 1997, IEEE Communications Letters.

[3]  Polina Bayvel,et al.  Sensitivity Gains by Mismatched Probabilistic Shaping for Optical Communication Systems , 2015, IEEE Photonics Technology Letters.

[4]  Polina Bayvel,et al.  Corrections to "Replacing the soft-decision FEC limit paradigm in the design of optical communication systems" , 2016 .

[5]  Gabriel Charlet,et al.  Joint coding rate and modulation format optimization for 8QAM constellations using BICM mutual information , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[6]  Laurent Schmalen,et al.  Experimental evaluation of coded modulation for a coherent PDM system with high spectral efficiency , 2012, OFC/NFOEC.

[7]  David R. Kincaid,et al.  Numerical mathematics and computing , 1980 .

[8]  Emre Telatar,et al.  Mismatched decoding revisited: General alphabets, channels with memory, and the wide-band limit , 2000, IEEE Trans. Inf. Theory.

[9]  J. Renaudier,et al.  Experimental comparison of two 8-QAM constellations at 200 Gb/s over ultra long-haul transmission link , 2014, 2014 The European Conference on Optical Communication (ECOC).

[10]  Johannes B. Huber,et al.  Coded modulation of polarization- and space-multiplexed signals , 2011, 2011 Asia Communications and Photonics Conference and Exhibition (ACP).

[11]  Igal Sason,et al.  On Universal LDPC Code Ensembles Over Memoryless Symmetric Channels , 2011, IEEE Transactions on Information Theory.

[12]  David Burshtein,et al.  Bounds on the belief propagation threshold of non-binary LDPC codes , 2012, 2012 IEEE Information Theory Workshop.

[13]  Patrick Schulte,et al.  Rate Adaptation and Reach Increase by Probabilistically Shaped 64-QAM: An Experimental Demonstration , 2016, Journal of Lightwave Technology.

[14]  Angeliki Alexiou,et al.  Link performance models for system level simulations of broadband radio access systems , 2005, 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications.

[15]  Laurent Schmalen,et al.  GPU Accelerated Belief Propagation Decoding of Non-Binary LDPC Codes with Parallel and Sequential Scheduling , 2015, J. Signal Process. Syst..

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[17]  Yu Zhao,et al.  Reusing Common Uncoded Experimental Data in Performance Estimation of Different FEC Codes , 2013, IEEE Photonics Technology Letters.

[18]  D. Millar,et al.  Eight-dimensional modulation for coherent optical communications , 2013 .

[19]  Laurent Schmalen,et al.  Experimental performance of 4D optimized constellation alternatives for PM-8QAM and PM-16QAM , 2014, OFC 2014.

[20]  Laurent Schmalen,et al.  Estimation of Soft FEC Performance in Optical Transmission Experiments , 2011, IEEE Photonics Technology Letters.

[21]  Patrick Schulte,et al.  Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation , 2015, IEEE Transactions on Communications.

[22]  Leszek Szczecinski,et al.  Bit-Interleaved Coded Modulation: Fundamentals, Analysis and Design , 2015 .

[23]  M. Nakazawa,et al.  2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz , 2014, OFC 2014.

[24]  Laurent Schmalen Energy efficient FEC for optical transmission systems , 2014, OFC 2014.

[25]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[26]  Guido Montorsi Analog Digital Belief Propagation , 2012, IEEE Communications Letters.

[27]  Peter A. Andrekson,et al.  Impact of 4D Channel Distribution on the Achievable Rates in Coherent Optical Communication Experiments , 2015, Journal of Lightwave Technology.

[28]  Polina Bayvel,et al.  On Achievable Rates for Long-Haul Fiber-Optic Communications , 2015, Optics express.

[29]  Guido Masera,et al.  VLSI Implementation of a Non-Binary Decoder Based on the Analog Digital Belief Propagation , 2014, IEEE Transactions on Signal Processing.

[30]  Laurent Schmalen,et al.  Advances in Detection and Error Correction for Coherent Optical Communications: Regular, Irregular, and Spatially Coupled LDPC Code Designs , 2016, ArXiv.

[31]  Peter A. Andrekson,et al.  Biorthogonal modulation in 8 dimensions experimentally implemented as 2PPM-PS-QPSK , 2014, OFC 2014.

[32]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[33]  Lars P. B. Christensen,et al.  Constellation Shaping for Fiber-Optic Channels With QAM and High Spectral Efficiency , 2014, IEEE Photonics Technology Letters.

[34]  P. Winzer,et al.  Capacity Limits of Optical Fiber Networks , 2010, Journal of Lightwave Technology.

[35]  William Ryan,et al.  Channel Codes: Classical and Modern , 2009 .

[36]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[37]  Polina Bayvel,et al.  Replacing the Soft-Decision FEC Limit Paradigm in the Design of Optical Communication Systems , 2015, Journal of Lightwave Technology.

[38]  Laurent Schmalen,et al.  Combining Spatially Coupled LDPC Codes with Modulation and Detection , 2013 .

[39]  Laurent Schmalen,et al.  Predicting the performance of nonbinary forward error correction in optical transmission experiments , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[40]  Polina Bayvel,et al.  Replacing the Soft FEC Limit Paradigm in the Design of Optical Communication Systems , 2015, ArXiv.

[41]  Joseph M. Kahn,et al.  Coded Modulation for Fiber-Optic Networks: Toward better tradeoff between signal processing complexity and optical transparent reach , 2014, IEEE Signal Processing Magazine.

[42]  S. Brink,et al.  Iterative demapping for QPSK modulation , 1998 .

[43]  Jessica Fickers,et al.  Pulse design trade-offs for spectrum-efficient PDM-WDM coherent optical transmission systems , 2014, OFC 2014.

[44]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[45]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[46]  Polina Bayvel,et al.  Information Rates of Next-Generation Long-Haul Optical Fiber Systems Using Coded Modulation , 2016, Journal of Lightwave Technology.

[47]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[48]  E. Forestieri,et al.  Achievable Information Rate in Nonlinear WDM Fiber-Optic Systems With Arbitrary Modulation Formats and Dispersion Maps , 2013, Journal of Lightwave Technology.

[49]  I.B. Djordjevic,et al.  Multidimensional LDPC-Coded Modulation for Beyond 400 Gb/s per Wavelength Transmission , 2009, IEEE Photonics Technology Letters.

[50]  Giuseppe Durisi,et al.  Capacity of a Nonlinear Optical Channel With Finite Memory , 2014, Journal of Lightwave Technology.

[51]  Alex Alvarado,et al.  Four-Dimensional Coded Modulation with Bit-Wise Decoders for Future Optical Communications , 2014, Journal of Lightwave Technology.

[52]  Shu Lin,et al.  Channel Codes: Classical and Modern , 2009 .

[53]  Wei Zeng,et al.  Simulation-Based Computation of Information Rates for Channels With Memory , 2006, IEEE Transactions on Information Theory.

[54]  F. Buchali,et al.  A Generic Tool for Assessing the Soft-FEC Performance in Optical Transmission Experiments , 2012, IEEE Photonics Technology Letters.

[55]  Masoud Ardakani,et al.  On the design of universal LDPC codes , 2008, 2008 IEEE International Symposium on Information Theory.

[56]  Robert F. H. Fischer,et al.  Multilevel codes: Theoretical concepts and practical design rules , 1999, IEEE Trans. Inf. Theory.

[57]  Ming-Fang Huang,et al.  698.5-Gb/s PDM-2048QAM transmission over 3km multicore fiber , 2013 .

[58]  Magnus Almgren,et al.  A fading-insensitive performance metric for a unified link quality model , 2006, IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006..

[59]  Laurent Schmalen,et al.  Spatially-coupled LDPC protograph codes for universal phase slip-tolerant differential decoding , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[60]  Shlomo Shamai,et al.  On information rates for mismatched decoders , 1994, IEEE Trans. Inf. Theory.

[61]  Frank R. Kschischang,et al.  Implications of information theory in optical fibre communications , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  I.B. Djordjevic,et al.  Nonbinary LDPC codes for optical communication systems , 2005, IEEE Photonics Technology Letters.

[63]  Henning Bulow,et al.  Coded modulation in optical communications , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[64]  Gianluigi Ferrari,et al.  Does the Performance of LDPC Codes Depend on the Channel? , 2006, IEEE Transactions on Communications.

[65]  Laurent Schmalen,et al.  Spatially Coupled Soft-Decision Error Correction for Future Lightwave Systems , 2015, Journal of Lightwave Technology.

[66]  Lei Xu,et al.  Using LDPC-Coded Modulation and Coherent Detection for Ultra Highspeed Optical Transmission , 2007, Journal of Lightwave Technology.

[67]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[68]  Martin J. Wainwright,et al.  Using linear programming to Decode Binary linear codes , 2005, IEEE Transactions on Information Theory.

[69]  Yuhong Yang Elements of Information Theory (2nd ed.). Thomas M. Cover and Joy A. Thomas , 2008 .

[70]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[71]  M. Karlsson,et al.  Power-Efficient Modulation Formats in Coherent Transmission Systems , 2009, Journal of Lightwave Technology.

[72]  A. Bisplinghoff,et al.  Phase slip tolerant, low power multi-level coding for 64QAM with 12.9 dB NCG , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[73]  William Ryan,et al.  Channel Codes by William Ryan , 2009 .