A dynamic system approach to quadratic programming problems with penalty method.

In this work, we propose a dynamical system (state space) model approach to find a unique minimum of quadratic programming (QP) problems with equality constrained. The unique minimum of the optimization problem is also proved to be asymptotically stable equilibrium point of the state space model. To obtain the optimal solution of QP optimization problem, we seek the limit point of the solution of the state space model by using the transfer function rather than discretization scheme. The numerical results are shown that the applicability and efficiency of the approach by compared with sequential quadratic programming (SQP) method in three examples. 2000 Mathematics subject classification : 90C20, 93C15, 93D20.

[1]  Robert L. Williams,et al.  Linear State-Space Control Systems , 2007 .

[2]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[3]  S. Nash,et al.  Linear and Nonlinear Programming , 1987 .

[4]  Yuri G. Evtushenko,et al.  Stable barrier-projection and barrier-Newton methods in linear programming , 1994, Comput. Optim. Appl..

[5]  X. Q. Yang,et al.  A Unified Gradient Flow Approach to Constrained Nonlinear Optimization Problems , 2003, Comput. Optim. Appl..

[6]  尾形 克彦,et al.  State space analysis of control systems , 1967 .

[7]  Li-Wei Zhang,et al.  Two differential equation systems for equality-constrained optimization , 2007, Appl. Math. Comput..

[8]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[9]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[10]  Ya-Xiang Yuan,et al.  Optimization theory and methods , 2006 .

[11]  C. G. Broyden,et al.  Penalty functions, Newton's method, and quadratic programming , 1988 .

[12]  M. C. Maciel,et al.  Augmented penalty algorithms based on BFGS secant approximations and trust regions , 2007 .

[13]  Ya-Xiang Yuan,et al.  Optimization Theory and Methods: Nonlinear Programming , 2010 .

[14]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[15]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[16]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[17]  V. G. Zhadan,et al.  Stable Barrier-projection and Barrier-Newton methods in nonlinear programming , 1994 .

[18]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[19]  Alice E. Smith,et al.  Penalty functions , 1996 .

[20]  David G. Luenberger,et al.  State space analysis of control systems , 1967 .