Metabolic Modeling for Design of Cell Factories

[1]  Eytan Ruppin,et al.  Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model , 2010, Bioinform..

[2]  Adam M. Feist,et al.  The biomass objective function. , 2010, Current opinion in microbiology.

[3]  Vinay Satish Kumar,et al.  GrowMatch: An Automated Method for Reconciling In Silico/In Vivo Growth Predictions , 2009, PLoS Comput. Biol..

[4]  Elias W. Krumholz,et al.  Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks* , 2015, The Journal of Biological Chemistry.

[5]  W. R. Cluett,et al.  Dynamic strain scanning optimization: an efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design , 2013, BMC Biotechnology.

[6]  Tomer Shlomi,et al.  Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways , 2010, Bioinform..

[7]  Hyun Uk Kim,et al.  Flux variability scanning based on enforced objective flux for identifying gene amplification targets , 2012, BMC Systems Biology.

[8]  Jennifer L Reed,et al.  Expanding metabolic engineering algorithms using feasible space and shadow price constraint modules , 2014, Metabolic engineering communications.

[9]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[10]  Zachary L. Fowler,et al.  Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. , 2011, Metabolic engineering.

[11]  Jens Nielsen,et al.  Evolutionary programming as a platform for in silico metabolic engineering , 2005, BMC Bioinformatics.

[12]  Terry Hazen,et al.  Molecular Systems Biology 9; Article number 674; doi:10.1038/msb.2013.30 Citation: Molecular Systems Biology 9:674 , 2022 .

[13]  F. Arnold,et al.  General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH , 2013, Proceedings of the National Academy of Sciences.

[14]  Hiroshi Shimizu,et al.  FastPros: screening of reaction knockout strategies for metabolic engineering , 2013, Bioinform..

[15]  Daniel Machado,et al.  Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based Models of Metabolism , 2014, PLoS Comput. Biol..

[16]  Chunhui Li,et al.  Exploring the diversity of complex metabolic networks , 2005, Bioinform..

[17]  Steffen Klamt,et al.  Enumeration of Smallest Intervention Strategies in Genome-Scale Metabolic Networks , 2014, PLoS Comput. Biol..

[18]  William R Cluett,et al.  EMILiO: a fast algorithm for genome-scale strain design. , 2011, Metabolic engineering.

[19]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[20]  Sunwon Park,et al.  Prediction of novel synthetic pathways for the production of desired chemicals , 2010, BMC Systems Biology.

[21]  Vinay Satish Kumar,et al.  Optimization based automated curation of metabolic reconstructions , 2007, BMC Bioinformatics.

[22]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[23]  Yuki Moriya,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Nucleic Acids Res..

[24]  Jennifer L. Reed,et al.  Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models , 2013, BMC Bioinformatics.

[25]  J. Reed,et al.  Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques , 2011, PloS one.

[26]  Adam M. Feist,et al.  Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. , 2010, Metabolic engineering.

[27]  Jennifer L Reed,et al.  FOCAL: an experimental design tool for systematizing metabolic discoveries and model development , 2012, Genome Biology.

[28]  J. Reed,et al.  RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations , 2012, Genome Biology.

[29]  Intawat Nookaew,et al.  Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling , 2013, BMC Systems Biology.

[30]  Keng C. Soh,et al.  Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. , 2013, Biotechnology journal.

[31]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[32]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[33]  Bas Teusink,et al.  Analysis of Growth of Lactobacillus plantarum WCFS1 on a Complex Medium Using a Genome-scale Metabolic Model* , 2006, Journal of Biological Chemistry.

[34]  Jennifer L Reed,et al.  Software platforms to facilitate reconstructing genome-scale metabolic networks. , 2014, Environmental microbiology.

[35]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[36]  Jennifer L. Reed,et al.  OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains , 2010, BMC Systems Biology.

[37]  Adam P. Arkin,et al.  Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions , 2011, PLoS genetics.

[38]  George M. Church,et al.  Redirector: Designing Cell Factories by Reconstructing the Metabolic Objective , 2013, PLoS Comput. Biol..

[39]  C. Maranas,et al.  An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. , 2006, Metabolic engineering.

[40]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[41]  Intawat Nookaew,et al.  The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum , 2013, PLoS Comput. Biol..

[42]  A. Burgard,et al.  Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. , 2011, Nature chemical biology.

[43]  V. Hatzimanikatis,et al.  Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3‐hydroxypropanoate , 2010, Biotechnology and bioengineering.

[44]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[45]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[46]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[47]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[48]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[49]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[50]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[51]  Adam M. Feist,et al.  Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap , 2013 .

[52]  Desmond S. Lun,et al.  Truncated branch and bound achieves efficient constraint-based genetic design , 2012, Bioinform..

[53]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[54]  Antje Chang,et al.  BRENDA, enzyme data and metabolic information , 2002, Nucleic Acids Res..

[55]  Nikolaos Anesiadis,et al.  Engineering metabolism through dynamic control. , 2015, Current opinion in biotechnology.

[56]  Norman W. Paton,et al.  The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks , 2011, J. Integr. Bioinform..

[57]  Costas D. Maranas,et al.  OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions , 2010, PLoS Comput. Biol..

[58]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[59]  B. Palsson,et al.  Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-throughput Phenotyping and Gene Essentiality Data* , 2007, Journal of Biological Chemistry.

[60]  M. Penttilä,et al.  Engineering Redox Cofactor Regeneration for Improved Pentose Fermentation in Saccharomyces cerevisiae , 2003, Applied and Environmental Microbiology.

[61]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[62]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  D. T. Jones,et al.  Acetone-butanol fermentation revisited. , 1986, Microbiological reviews.

[64]  Jennifer L Reed,et al.  Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. , 2013, Biotechnology journal.

[65]  Peter D. Karp,et al.  The MetaCyc Database , 2002, Nucleic Acids Res..

[66]  Sang Yup Lee,et al.  In Silico Identification of Gene Amplification Targets for Improvement of Lycopene Production , 2010, Applied and Environmental Microbiology.

[67]  M. R. Long,et al.  Computational methods in metabolic engineering for strain design. , 2015, Current opinion in biotechnology.

[68]  Jong Myoung Park,et al.  Genome-scale analysis of Mannheimia succiniciproducens metabolism. , 2007, Biotechnology and bioengineering.

[69]  Jonathan A. Kelner,et al.  Large-scale identification of genetic design strategies using local search , 2009, Molecular systems biology.

[70]  Bernhard O. Palsson,et al.  Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux Profiles , 2006, PLoS Comput. Biol..

[71]  J. Nielsen,et al.  In silico genome‐scale reconstruction and validation of the Corynebacterium glutamicum metabolic network , 2009, Biotechnology and bioengineering.

[72]  Jens Nielsen,et al.  Mapping global effects of the anti-sigma factor MucA in Pseudomonas fluorescens SBW25 through genome-scale metabolic modeling , 2013, BMC Systems Biology.

[73]  Costas D Maranas,et al.  OptStrain: a computational framework for redesign of microbial production systems. , 2004, Genome research.

[74]  Ali R. Zomorrodi,et al.  A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. , 2014, Metabolic engineering.

[75]  T. Shlomi,et al.  MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks , 2012, Genome Biology.

[76]  Radhakrishnan Mahadevan,et al.  Novel approach to engineer strains for simultaneous sugar utilization. , 2013, Metabolic engineering.

[77]  Ping Zheng,et al.  ReacKnock: Identifying Reaction Deletion Strategies for Microbial Strain Optimization Based on Genome-Scale Metabolic Network , 2013, PloS one.

[78]  U. Sauer,et al.  Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli , 2007, Molecular systems biology.

[79]  Meiyappan Lakshmanan,et al.  Genome-scale in silico modeling and analysis for designing synthetic terpenoid-producing microbial cell factories , 2013 .

[80]  Tom M. Conrad,et al.  Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models , 2010, Molecular systems biology.

[81]  Costas D. Maranas,et al.  k-OptForce: Integrating Kinetics with Flux Balance Analysis for Strain Design , 2014, PLoS Comput. Biol..

[82]  F. Blattner,et al.  In silico design and adaptive evolution of Escherichia coli for production of lactic acid. , 2005, Biotechnology and bioengineering.