Fast and continuous processing of a new sub-micronic lanthanide-based metal–organic framework

Processing strategies for the synthesis of hybrid materials stand as relevant ways to modulate the particle size and morphology. We present herein the use of a continuous high temperature–high pressure (HT–HP) process for the synthesis of a new cerium based metal–organic framework (MOF). The HT–HP harsh thermodynamic synthesis conditions lead to MOF nanostructures exhibiting the same phase as for microparticles obtained under conventional batch solvothermal conditions but in exceptional much shorter residence times, opening avenues towards production scaling-up. The HT–HP process also tailors down the size of the particles, which still presents a major issue for most MOF applications.

[1]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[2]  Reineke,et al.  A Microporous Lanthanide-Organic Framework. , 1999, Angewandte Chemie.

[3]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[4]  Gérard Férey,et al.  Adsorption properties in high optical quality nanoZIF-8 thin films with tunable thickness , 2010 .

[5]  Anne Pichon,et al.  Solvent-free synthesis of metal complexes. , 2007, Chemical Society reviews.

[6]  C. Aymonier,et al.  Preparation of functional hybrid palladium nanoparticles using supercritical fluids: a novel approach to detach the growth and functionalization steps. , 2008, Chemical communications.

[7]  Soichi Wakatsuki Acta Crystallographica , 1948, Nature.

[8]  Ning Zhang,et al.  A new 3D metal–organic framework with (4, 8)-connected AlB2 topology constructed from coordinated evolution of a C3 symmetry ligand , 2011 .

[9]  P. Hagenmuller,et al.  Luminescence properties of Ce3+ and Tb3+ in a new family of boron-rich alkaline earth rare earth borates , 1987 .

[10]  Cyril Aymonier,et al.  Synthesis of exciton luminescent ZnO nanocrystals using continuous supercritical microfluidics. , 2011, Angewandte Chemie.

[11]  W. Marsden I and J , 2012 .

[12]  T. Uemura,et al.  Topotactic linear radical polymerization of divinylbenzenes in porous coordination polymers. , 2007, Angewandte Chemie.

[13]  Jun Kim,et al.  Sonochemical synthesis of MOF-5. , 2008, Chemical communications.

[14]  Yu Yang,et al.  Luminescent Open Metal Sites within a Metal–Organic Framework for Sensing Small Molecules , 2007 .

[15]  T. Reineke,et al.  From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites , 1999 .

[16]  Z. Lai,et al.  Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth , 2009 .

[17]  Cyril Aymonier,et al.  Review of supercritical fluids in inorganic materials science , 2006 .

[18]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[19]  T. Uemura,et al.  Controlled Synthesis of Anisotropic Polymer Particles Templated by Porous Coordination Polymers , 2013 .

[20]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[21]  J. Rossat-Mignod,et al.  Magnetic ordering in cerium and uranium monopnictides , 1980 .

[22]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[23]  Jian Lu,et al.  Coordination Polymers of Co(NCS)2 with Pyrazine and 4,4‘-Bipyridine: Syntheses and Structures , 1997 .

[24]  Edward Lester,et al.  Instant MOFs: continuous synthesis of metal-organic frameworks by rapid solvent mixing. , 2012, Chemical communications.

[25]  Luís D. Carlos,et al.  Luminescent multifunctional lanthanides-based metal-organic frameworks. , 2011, Chemical Society reviews.

[26]  Cyril Aymonier,et al.  Design of functional nanostructured materials using supercritical fluids , 2009 .

[27]  X. You,et al.  Structures and properties of porous coordination polymers based on lanthanide carboxylate building units. , 2010, Inorganic chemistry.

[28]  P. Dorenbos,et al.  Optical and scintillation properties of cerium-doped LaCl3, LuBr3 and LuCl3 , 1999 .

[29]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[30]  Jong‐San Chang,et al.  Microwave synthesis of a nanoporous hybrid material, chromium trimesate , 2005 .

[31]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[32]  Shyam Biswas,et al.  Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. , 2012, Chemical reviews.

[33]  L. Long,et al.  Guest controlled coordination framework: syntheses, crystal structures and thermal properties of two three-dimensional structures of [Ce2(adipate)3(OH2)4]·6H2O and , 2002 .

[34]  C. Knobler,et al.  Metal-organic frameworks of vanadium as catalysts for conversion of methane to acetic acid. , 2011, Inorganic chemistry.

[35]  Gérard Férey,et al.  A new photoactive crystalline highly porous titanium(IV) dicarboxylate. , 2009, Journal of the American Chemical Society.

[36]  M. Komiyama,et al.  Catalytic Hydrolysis of Peptides by Cerium(IV) , 2000 .

[37]  Tonino Caruso,et al.  Brønsted acidity of ceric ammonium nitrate in anhydrous DMF. The role of salt and solvent in sucrose cleavage , 2006 .

[38]  T. Friščić,et al.  Ion- and liquid-assisted grinding: improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. , 2010, Angewandte Chemie.

[39]  Inhar Imaz,et al.  A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. , 2013, Nature chemistry.

[40]  S. Marre,et al.  Near- and supercritical alcohols as solvents and surface modifiers for the continuous synthesis of cerium oxide nanoparticles. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[41]  S. Beauchemin,et al.  On the mechanism of alcoholysis of allylic and benzylic alcohols and of epoxides in the presence of ceric ammonium nitrate , 1996 .

[42]  J. Klinowski,et al.  Microwave-assisted synthesis of metal-organic frameworks. , 2011, Dalton transactions.

[43]  Seth M. Cohen,et al.  Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification. , 2010, Chemistry.

[44]  David Grosso,et al.  Green scalable aerosol synthesis of porous metal-organic frameworks. , 2013, Chemical communications.

[45]  O. Evans,et al.  Three-dimensional open frameworks based on cobalt(II) and nickel(II) m-pyridinecarboxylates. , 2001, Inorganic chemistry.

[46]  M. Kanatzidis,et al.  [Ce(PSe4)4]9−: a highly anionic Ce3+ selenophosphate coordination complex , 1998 .

[47]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[48]  M. Allendorf,et al.  Metal‐Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials , 2011, Advanced materials.

[49]  S. Marre,et al.  Microfluidic synthesis of palladium nanocrystals assisted by supercritical CO2: tailored surface properties for applications in boron chemistry. , 2012, Angewandte Chemie.

[50]  A. Cheetham,et al.  Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. , 2011, Journal of the American Chemical Society.

[51]  T. Reineke,et al.  Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. , 2001, Journal of the American Chemical Society.

[52]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[53]  K. Hsu,et al.  Structures, thermal stabilities, and magnetic properties of four new lanthanide coordinative frameworks incorporating mixed organic ligands , 2008 .

[54]  Htjm Bert Hintzen,et al.  Luminescence Properties of Terbium-, Cerium-, or Europium-Doped α-Sialon Materials , 2002 .

[55]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[56]  Gérard Férey,et al.  Metal-organic frameworks as efficient materials for drug delivery. , 2006, Angewandte Chemie.

[57]  H. H. Wang,et al.  Hydrothermal Synthesis of a Dense Metal−Organic Layered Framework That Contains Cu(I)−Olefinic Bonds, Cu2(O2CCHCHCO2) , 1998 .

[58]  C. D. Novion,et al.  Proprietes magnetiques du nitrure de cerium: Centre d'Etudes Nucléaires de Fontenay-aux-Roses, S.E.C.P.E.R., Section d'Etudes des Céramiques à base de Plutonium , 1969 .

[59]  J. C. Price,et al.  Dipolar molecular rotors in the metal-organic framework crystal IRMOF-2. , 2008, Physical chemistry chemical physics : PCCP.

[60]  X. You,et al.  Syntheses, structures, and luminescence properties of a new family of three-dimensional open-framework lanthanide coordination polymers , 2002 .

[61]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[62]  A. Michaelides,et al.  Reactive microporous rare-earth coordination polymers that exhibit single-crystal-to-single-crystal dehydration and rehydration , 2005 .