An OVerview on Soft Computing in Behavior Based Robotics

This paper provides an overview on the contribution of soft computing to the field of behavior based robotics. It discusses the role of pure fuzzy, neuro-fuzzy and genetic fuzzy rule-based systems for behavior architectures and adaptation. It reviews a number of applications of soft computing techniques to autonomous robot navigation and control.

[1]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[2]  Frank Hoffmann,et al.  Evolutionary algorithms for fuzzy control system design , 2001, Proc. IEEE.

[3]  John Yen,et al.  A fuzzy logic based extension to Payton and Rosenblatt's command fusion method for mobile robot navigation , 1995, IEEE Trans. Syst. Man Cybern..

[4]  Henrik I. Christensen,et al.  Using the dynamical system approach to navigate in realistic real-world environments , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[5]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[6]  N. H. C. Yung,et al.  A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[7]  M. Colley,et al.  Online learning of fuzzy behaviours using genetic algorithms and real-time interaction with the environment , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[8]  Andrea Bonarini,et al.  An architecture to coordinate fuzzy behaviors to control an autonomous robot , 2003, Fuzzy Sets Syst..

[9]  Edward W. Tunstel,et al.  Fuzzy-Behavior Synthesis, Coordination, and Evolution in an Adaptive Behavior Hierarchy , 2001 .

[10]  Maja J. Mataric,et al.  A decision-theoretic approach to fuzzy behavior coordination , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[11]  Hani Hagras,et al.  Online learning of fuzzy behaviour co-ordination for autonomous agents using genetic algorithms and real-time interaction with the environment , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[12]  Andrea Bonarini,et al.  Evolutionary Learning of Fuzzy rules: competition and cooperation , 1996 .

[13]  Jean-Arcady Meyer,et al.  Evolutionary approaches to neural control in mobile robots , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[14]  Nigel Steele,et al.  Neuro-Fuzzy Control for Basic Mobile Robot Behaviours , 2001 .

[15]  Alessandro Saffiotti,et al.  A Multivalued Logic Approach to Integrating Planning and Control , 1995, Artif. Intell..

[16]  Jianwei Zhang,et al.  Integrating Deliberative and Reactive Strategies via Fuzzy Modular Control , 2001 .

[17]  Edward Tunstel,et al.  Fuzzy behavior hierarchies for multi‐robot control , 2002, Int. J. Intell. Syst..

[18]  Gerald Sommer,et al.  NEURAL FUZZY TECHNIQUES IN SONAR-BASED COLLISION AVOIDANCE , 1998 .