A new approach to dynamic all pairs shortest paths

We study novel combinatorial properties of graphs that allow us to devise a completely new approach to dynamic all pairs shortest paths problems. Our approach yields a fully dynamic algorithm for general directed graphs with non-negative real-valued edge weights that supports any sequence of operations in Õ(n2) amortized time per update and unit worst-case time per distance query, where n is the number of vertices. We can also report shortest paths in optimal worst-case time. These bounds improve substantially over previous results and solve a long-standing open problem. Our algorithm is deterministic and uses simple data structures.

[1]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[2]  Peter S Loubai A NETWORK EVALUATION PROCEDURE , 1967 .

[3]  V. V. Rodionov The parametric problem of shortest distances , 1968 .

[4]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[5]  Shimon Even,et al.  Updating distances in dynamic graphs , 1985 .

[6]  Hans Rohnert,et al.  A Dynamization of the All Pairs Least Cost Path Problem , 1985, STACS.

[7]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[8]  Giuseppe F. Italiano,et al.  Incremental algorithms for minimal length paths , 1991, SODA '90.

[9]  Thomas W. Reps,et al.  On the Computational Complexity of Dynamic Graph Problems , 1996, Theor. Comput. Sci..

[10]  Thomas W. Reps,et al.  An Incremental Algorithm for a Generalization of the Shortest-Path Problem , 1996, J. Algorithms.

[11]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[12]  Daniele Frigioni,et al.  Semidynamic Algorithms for Maintaining Single-Source Shortest Path Trees , 1998, Algorithmica.

[13]  D. Knuth,et al.  Mathematics for the Analysis of Algorithms , 1999 .

[14]  Valerie King,et al.  Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[15]  Daniele Frigioni,et al.  Fully Dynamic Algorithms for Maintaining Shortest Paths Trees , 2000, J. Algorithms.

[16]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[17]  Giuseppe F. Italiano,et al.  Fully dynamic all pairs shortest paths with real edge weights , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[18]  Giuseppe F. Italiano,et al.  Improved Bounds and New Trade-Offs for Dynamic All Pairs Shortest Paths , 2002, ICALP.

[19]  Ramesh Hariharan,et al.  Improved decremental algorithms for maintaining transitive closure and all-pairs shortest paths , 2002, STOC '02.

[20]  Giuseppe F. Italiano,et al.  A new approach to dynamic all pairs shortest paths , 2004, JACM.

[21]  Mikkel Thorup,et al.  Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing Negative Cycles , 2004, SWAT.

[22]  Giuseppe F. Italiano,et al.  Experimental analysis of dynamic all pairs shortest path algorithms , 2004, SODA '04.