Multi-pole system analysis (MPSA) – A systematic method towards techno-economic optimal system design

A new and general method for holistic system modeling using multi-pole formalism is presented. The motivation of our research is to develop a structured method for simultaneous system description and assessment with respect to several criteria, e.g. economic profitability, energetic efficiency and environmental impact. The method is named multi-pole system analysis (MPSA) and allows to combine an arbitrarily complex connected system. Thus, one ends up with a simple mathematical expression which generates a concentrated and broad system understanding and highlights interactions of multiple input and output quantities. The MPSA method is used to describe a conceptual wind-energy converter both energetically and economically. The resulting techno-economic analysis consists of the three essential steps of (i) techno-economic modeling, (ii) detailed energetic and economic analysis and (iii) system optimization. By applying these steps one obtains systematically and in a structured manner the techno-economic optimal system. The energetic analysis is performed by applying axiomatic conversion laws on a presented physical model of the energy conversion system. By using empiric scaling laws not only one but a multitude of possible systems are considered. The economic analysis is performed by applying economic models of the dynamic investment analysis. The techno-economic optimal system in the classic definition of Pareto optimality is shown. The method shows that only a simultaneous consideration of energetic and economic aspects leads to reasonable system design and operation.

[1]  J. Keynes,et al.  The General Theory of Employment, Interest and Money. , 1936 .

[2]  Zaoxiao Zhang,et al.  Simultaneous optimization of integrated heat, mass and pressure exchange network using exergoeconomic method , 2014 .

[3]  Max F. Platzer,et al.  Renewable Hydrogen Production Using Sailing Ships , 2014 .

[4]  Jorg Thöming,et al.  Thermoeconomic optimization of vertical ground-source heat pump systems through nonlinear integer programming , 2014 .

[5]  A. Betz Wind-energie und ihre ausnutzung durch windmühlen , 1926 .

[6]  Chul B. Park,et al.  Wind power generation with a parawing on ships, a proposal , 2009 .

[7]  M. Järvinen,et al.  Exergoeconomic assessment of CHP-integrated biomass upgrading , 2015 .

[8]  Peter F. Pelz,et al.  Optimal energy systems design applied to an innovative ocean-wind energy converter , 2015 .

[9]  Göran Wall,et al.  Thermoeconomic optimization of a heat pump system , 1986 .

[10]  Peter F. Pelz,et al.  Analytical method towards an optimal energetic and economical wind-energy converter , 2016 .

[11]  Dieter Schneider,et al.  Geschichte und Methoden der Wirtschaftswissenschaft , 2001 .

[12]  Hermann von Helmholtz Über die Erhaltung der Kraft : eine physikalische Abhandlung, vorgetragen in der Sitzung der physikalischen Gesellschaft zu Berlin am 23sten Juli 1847 , 1966 .

[13]  George Tsatsaronis,et al.  Thermoeconomic analysis and optimization of energy systems , 1993 .

[14]  G. Tsatsaronis Definitions and nomenclature in exergy analysis and exergoeconomics , 2007 .

[15]  Peter F. Pelz Upper Limit for Hydropower in an Open-Channel Flow , 2011 .

[16]  James Prescott Joule,et al.  Mechanical Equivalent of Heat , 1871, Nature.

[17]  R. Clausius,et al.  Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie , 1865 .

[18]  A. H. Mosaffa,et al.  Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage , 2016 .

[19]  Klaus Brockhoff Geschichte der Betriebswirtschaftslehre : kommentierte Meilensteine und Originaltexte , 2000 .

[20]  Gottfried Peter Süssmilch Meditatio juridico — mathematica de interusurio simplice , 1967 .

[21]  M. Berenguel,et al.  Thermo-economic design optimization of parabolic trough solar plants for industrial process heat applications with memetic algorithms , 2014 .

[22]  Y. M. El-Sayed,et al.  Thermoeconomics and the Design of Heat Systems , 1970 .

[23]  Vittorio Verda,et al.  Thermoeconomic analysis of a Compressed Air Energy Storage (CAES) system integrated with a wind power plant in the framework of the IPEX Market , 2015 .

[24]  Tatiana Morosuk,et al.  Exergoenvironmental analysis of a steam methane reforming process for hydrogen production , 2011 .

[25]  Herbert Jericha,et al.  Renewable Power via Energy Ship and Graz Cycle , 2014 .

[26]  Liselotte Schebek,et al.  Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems , 2009 .

[27]  Carl-Johan Fogelholm,et al.  Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant , 2013 .

[28]  Max F. Platzer,et al.  A New Oscillating-Foil Power Generator for Sailingship-Based Renewable Energy Generation , 2010 .

[29]  George Tsatsaronis Exergoeconomics: Is it only a new name?† , 1996 .

[30]  George Tsatsaronis,et al.  Application of Exergoeconomic and Exergoenvironmental Analysis to an SOFC System with an Allothermal Biomass Gasifier , 2009 .

[31]  David Watson Taylor The Speed and Power of Ships; A Manual of Marine Propulsion , 2012 .