Eigenvalues, invariant factors, highest weights, and Schubert calculus
暂无分享,去创建一个
[1] Jacques Deruyts. Essai d'une théorie générale des formes algébriques , 1890 .
[2] N. Sheibani,et al. Paris , 1894, The Hospital.
[3] D. E. Littlewood,et al. Group Characters and Algebra , 1934 .
[4] R. Tennant. Algebra , 1941, Nature.
[5] K. Fan. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[6] K. Fan. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations: II. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[7] G. Forsythe,et al. The proper values of the sum and product of symmetric matrices , 1953 .
[8] A. Horn. Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .
[9] H. Wielandt. An extremum property of sums of eigenvalues , 1955 .
[10] A. R. Amir-Moéz. Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations , 1956 .
[11] B. Kostant. Lie Algebra Cohomology and the Generalized Borel-Weil Theorem , 1961 .
[12] A. Horn. Eigenvalues of sums of Hermitian matrices , 1962 .
[13] D. Mumford,et al. Geometric Invariant Theory , 2011 .
[14] Über die Eigenwerte der Summe zweier selbstadjungierter Operatoren , 1965 .
[15] T. Klein. The Multiplication of Schur-Functions and Extensions of p-Modules , 1968 .
[16] T. Klein. The Hall polynomial , 1969 .
[17] On the eigenvalues of sums of Hermitian matrices. II , 1970 .
[18] R. C. Thompson,et al. On the Eigenvalues of Sums of Hermitian Matrices , 1971 .
[19] M. Fiedler. Bounds for the determinant of the sum of hermitian matrices , 1971 .
[20] The Eigenvalues and Singular Values of Matrix Sums and Products. VII (1) , 1973 .
[21] Shmuel Friedland,et al. Extremal eigenvalue problems for convex sets of symmetric matrices and operators , 1973 .
[22] On a construction of B.P. Zwahlen , 1974 .
[23] Steven L. Kleiman,et al. The transversality of a general translate , 1974 .
[24] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[25] B. V. Lidskii. Spectral polyhedron of a sum of two Hermitian matrices , 1982 .
[26] Robert C. Thompson. An inequality for invariant factors , 1982 .
[27] Gert Heckman,et al. Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups , 1982 .
[28] R. Riddell,et al. Minimax problems on Grassmann manifolds. Sums of eigenvalues , 1984 .
[29] Daniel R. Grayson. Reduction theory using semistability , 1984 .
[30] C. Byrnes,et al. Frequency domain and state space methods for linear systems , 1986 .
[31] D. Ortland,et al. Point sets in projective spaces and theta functions , 1988 .
[32] R. C. Thompson. A divisibility nonrelation for the smith invariants of a product of integral matrices , 1988 .
[33] The local invariant factors of a product of holomorphic matrix functions: The order 4 case , 1993 .
[34] Sums of adjoint orbits , 1993 .
[35] The local invariant factors of a product of holomorphic matrix functions: The order 4 case , 1993 .
[36] B. Totaro. TENSOR PRODUCTS OF SEMISTABLES ARE SEMISTABLE , 1994 .
[37] E. M. Sá,et al. Singular values and invariant factors of matrix sums and products , 1995 .
[38] U. Helmke,et al. Eigenvalue inequalities and Schubert calculus , 1995 .
[39] Charles R. Johnson,et al. The Relationship between AB and BA , 1996 .
[40] P. Pragacz,et al. Formulas for Lagrangian and orthogonal degeneracy loci; the Q-polynomials approach , 1996, alg-geom/9602019.
[41] P. Pragacz,et al. Formulas for Lagranigian and orthogonal degeneracy loci; $$\widetilde Q$$ -polynomial approach , 1997, Compositio Mathematica.
[42] Chris Woodward,et al. Eigenvalues of products of unitary matrices and quantum Schubert calculus , 1997 .
[43] William Fulton,et al. Eigenvalues of sums of Hermitian matrices [After A. Klyachko] , 1998 .
[44] R. C. Thompson,et al. The spectrum of a Hermitian matrix sum , 1998 .
[45] A. Berenstein,et al. Projections of Coadjoint Orbits and the Hilbert-Mumford Criterion , 1998 .
[46] Terence Tao,et al. The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture , 1998, math/9807160.
[47] P. Biane. FREE PROBABILITY FOR PROBABILISTS , 1998, math/9809193.
[48] A. Klyachko. Stable bundles, representation theory and Hermitian operators , 1998 .
[49] J. Baik,et al. On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.
[50] T. Tam. A unified extension of two results of Ky Fan on the sum of matrices , 1998 .
[51] Anders S. Buch. The saturation conjecture (after A. Knutson and T. Tao) , 1998 .
[52] Moment maps and Riemannian symmetric pairs , 1999, math/9902059.
[53] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .
[54] A. Knutson. The symplectic and algebraic geometry of Horn's problem , 1999, math/9911088.
[55] E. M. D. Sá,et al. Group Representations and Matrix Spectral Problems , 1999 .
[56] Frank Sottile,et al. The special Schubert calculus is real , 1999 .
[57] Louis J. Billera,et al. New perspectives in algebraic combinatorics , 1999 .
[58] A. Okounkov. Random matrices and ramdom permutations , 1999, math/9903176.
[59] A. Klyachko. Random walks on symmetric spaces and inequalities for matrix spectra , 2000 .
[60] Harm Derksen,et al. Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients , 2000 .
[61] Prakash Belkale,et al. Local Systems on P1 - S for S a Finite Set , 2001, Compositio Mathematica.