On the Red Shift of OH Stretching Region Vibrations in Ice and Water

s The nature of the red shift of frequencies of the fundamental modes, Y, and v3, in the OH stretching region of the vibrational spectrum of ice (and, possibly, in water) under H-bonding formation is explained in the framework of the continuum approach for the one-dimensional infinite chain of water molecules rep- resented as dipolar and polarizable OH oscillators vibrating in the definite force field. The explicit expres- sions in the form of the generalized cnoidal nonlinear waves describing these fundamental modes and obtained as the solutions of the nonlinear Klein-Gordon equation of motion, and their red shifts that are consistent with experimental observations, are presented.

[1]  Y. Shen,et al.  Infrared predissociation spectra of water dimer in a supersonic molecular beam , 1984 .

[2]  K. Heinzinger,et al.  Molecular dynamics study of high-density liquid water using a modified central-force potential , 1984 .

[3]  J. Reimers,et al.  The structure and vibrational spectra of small clusters of water molecules , 1984 .

[4]  S. Chin,et al.  Prediction of the vibrational spectra of interacting water molecules , 1984 .

[5]  S. Rice,et al.  A theoretical analysis of the hydroxyl stretching spectra of ice Ih, liquid water, and amorphous solid water , 1983 .

[6]  Y. Maréchal A quantitative analysis of the ν??? (IR) bands of H-bonds. I. Theory , 1983 .

[7]  Willis B. Person,et al.  Interpretation of infrared intensity changes on molecular complex formation. I. Water dimer , 1983 .

[8]  K. Heinzinger,et al.  An improved potential for non-rigid water molecules in the liquid phase , 1983 .

[9]  S. Rice,et al.  An improved analysis of the OH stretching spectrum of amorphous solid water , 1983 .

[10]  S. Rice,et al.  The OH stretching spectrum of liquid water: A random network model interpretation , 1983 .

[11]  Y. Bouteiller,et al.  On the basis set superposition error in potential surface investigations. I. Hydrogen‐bonded complexes with standard basis set functions , 1983 .

[12]  H. Fröhlich,et al.  Evidence for coherent excitation in biological systems , 1983 .

[13]  P. Bopp,et al.  The Dependence of the Internal Vibrational Frequencies of Liquid Water on Central Force Potentials , 1983 .

[14]  M. Newton,et al.  Theoretical aspects of the OH⋯O hydrogen bond and its role in structural and kinetic phenomena , 1983 .

[15]  J. Reimers,et al.  Analysis of the OH bend and stretch region in the vibrational spectrum of water , 1983 .

[16]  C. Ratcliffe,et al.  Vibrational spectral studies of solutions at elevated temperatures and pressures. 5. Raman studies of liquid water up to 300.degree.C , 1982 .

[17]  S. Rice,et al.  An improved analysis of the OH stretching region of the vibrational spectrum of ice Ih , 1982 .

[18]  A. J. Sadlej,et al.  Spectroscopic parameters of interacting systems: Part III. Ab initio study of vibrational intensity changes due to hydrogen bonding and ion-molecule interaction in (H2O)2 and (H2O) 2Li+ , 1982 .

[19]  E. S. Campbell,et al.  A cooperative calculation of geometries, energetics and electric properties of water trimers and tetramers , 1982 .

[20]  P. Fowler,et al.  The effects of rotation, vibration and isotopic substitution on the electric dipole moment, the magnetizability and the nuclear magnetic shielding of the water molecule , 1981 .

[21]  P. Fowler,et al.  Dipole moment, magnetizability and nuclear shielding surfaces for the water molecule , 1981 .

[22]  S. Rice,et al.  A random network model for water , 1981 .

[23]  P. L. Bhatnagar Nonlinear Waves in One-Dimensional Dispersive Systems , 1980 .

[24]  W. J. Orville-Thomas,et al.  Studies of intermolecular interactions by matrix isolation vibrational spectroscopy: Self-association of water , 1980 .

[25]  M. Mezei,et al.  A cooperative calculation and analysis of electric fields, induced dipole vectors and lattice energies for rotationally ordered ices IX, II and disordered Ih , 1980 .

[26]  F. Stillinger,et al.  Study of the water octamer using the polarization model of molecular interactions , 1980 .

[27]  Y. Bouteiller,et al.  Theoretical electronic plus vibrational investigation of some hydrogen‐bonded complexes. I. Stretching cubic and quartic force constants of FH⋅⋅⋅OH2 , 1980 .

[28]  H. Werner,et al.  Theoretical dipole moment functions of the HF, HCl, and HBr molecules , 1980 .

[29]  D. Maillard,et al.  Convergency of some properties of electrostatically interacting molecules from accurate CI multipole function calculations , 1980 .

[30]  T. R. Dyke,et al.  Partially deuterated water dimers: Microwave spectra and structure , 1980 .

[31]  J. D. Bene Molecular orbital theory of cooperative effects in an interrupted chain of hydrogen bonds , 1980 .

[32]  K. Heinzinger,et al.  A Molecular Dynamics Study of Aqueous Solutions , 1979 .

[33]  J. E. Quinn,et al.  Cooperative effects in simulated water , 1979, Nature.

[34]  P. Giguère The great fallacy of the H+ ion: And the true nature of H3O+ , 1979 .

[35]  S. Rice,et al.  On the role of Fermi resonance in the spectrum of water in its condensed phases , 1979 .

[36]  S. Rice,et al.  A zeroth order random network model of liquid water , 1979 .

[37]  S. Rice,et al.  A conjectured interpretation of the OH stretching spectrum of low density amorphous solid water , 1978 .

[38]  S. Rice,et al.  Raman spectroscopic studies of the OH stretching region of low density amorphous solid water and of polycrystalline ice Ih , 1978 .

[39]  S. Rice,et al.  A theoretical study of the OH stretching region of the vibrational spectrum of ice Ih , 1978 .

[40]  Frank H. Stillinger,et al.  Polarization model for water and its ionic dissociation products , 1978 .

[41]  Barry Robson,et al.  Intermolecular Interactions: from diatomics to biopolymers , 1978 .

[42]  Frank H. Stillinger,et al.  Revised central force potentials for water , 1978 .

[43]  S. Rice,et al.  The 2500–4000 cm−1 Raman and infrared spectra of low density amorphous solid water and of polycrystalline ice I , 1977 .

[44]  S. Rice,et al.  An interpretation of the OH stretching region of the vibrational spectrum of ice I , 1977 .

[45]  B. Nelander,et al.  Infrared spectrum of the water dimer in solid nitrogen. I. Assignment and force constant calculations , 1977 .

[46]  Y. Naberukhin,et al.  The fluctuation hypothesis of hydrogen bonding , 1977 .

[47]  P. Schuster,et al.  Ab initio studies on infinite linear hydrogen fluoride chains , 1976 .

[48]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[49]  F. Stillinger,et al.  Study of a central force model for liquid water by molecular dynamics , 1975 .

[50]  Y. Naberukhin,et al.  The fluctuation hypothesis of hydrogen bonding: I. General discussion , 1975 .

[51]  L. C. Allen Simple model of hydrogen bonding , 1975 .

[52]  E. Whalley The O-H distance in ice , 1974 .

[53]  J. Scherer,et al.  Raman spectra and structure of water from -10 to 90.deg. , 1974 .

[54]  T. Paolo,et al.  Model Calculations on the Influence of Mechanical and Electrical Anharmonicity on Infrared Intensities: Relation to Hydrogen Bonding , 1972 .

[55]  H. Bernstein,et al.  Raman spectra and an assignment of the vibrational stretching region of water , 1972 .

[56]  E. Whalley,et al.  Infrared Spectra of Ices Ih and Ic in the Range 4000 to 350 cm—1 , 1964 .

[57]  M. Taylor,et al.  RAMAN SPECTRA OF ICES Ih, Ic, II, III, AND V , 1964 .

[58]  Eugene S. Kryachko,et al.  Theory of molecular interactions , 1986 .

[59]  C. Sandorfy Vibrational spectra of hydrogen bonded systems in the gas phase , 1984 .

[60]  S. Rice Conjectures on the structure of amorphous solid and liquid water. , 1975, Topics in current chemistry.

[61]  A. Tursi,et al.  Matrix‐Isolation Study of the Water Dimer in Solid Nitrogen , 1970 .

[62]  W. Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[63]  A. L. McClellan,et al.  The Hydrogen Bond , 1960 .

[64]  Henry S. Frank,et al.  Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure , 1957 .