Robust MPC via min-max differential inequalities

This paper is concerned with tube-based model predictive control (MPC) for both linear and nonlinear, input-affine continuous-time dynamic systems that are affected by time-varying disturbances. We derive a min-max differential inequality describing the support function of positive robust forward invariant tubes, which can be used to construct a variety of tube-based model predictive controllers. These constructions are conservative, but computationally tractable and their complexity scales linearly with the length of the prediction horizon. In contrast to many existing tube-based MPC implementations, the proposed framework does not involve discretizing the control policy and, therefore, the conservatism of the predicted tube depends solely on the accuracy of the set parameterization. The proposed approach is then used to construct a robust MPC scheme based on tubes with ellipsoidal cross-sections. This ellipsoidal MPC scheme is based on solving an optimal control problem under linear matrix inequality constraints. We illustrate these results with the numerical case study of a spring-mass-damper system.

[1]  Dewei Li,et al.  The Feedback Robust MPC for LPV Systems With Bounded Rates of Parameter Changes , 2010, IEEE Transactions on Automatic Control.

[2]  Rolf Findeisen,et al.  Parameterized Tube Model Predictive Control , 2012, IEEE Transactions on Automatic Control.

[3]  Eric C. Kerrigan,et al.  Output feedback receding horizon control of constrained systems , 2007, Int. J. Control.

[4]  Jan Van Impe,et al.  Robust Optimization of Nonlinear Dynamic Systems with Application to a Jacketed Tubular Reactor , 2012 .

[5]  Moritz Diehl,et al.  A Short Note on Constrained Linear Control Systems With Multiplicative Ellipsoidal Uncertainty , 2016, IEEE Transactions on Automatic Control.

[6]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[7]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems: Time varying case , 2009, Autom..

[8]  S. Raković Set Theoretic Methods in Model Predictive Control , 2009 .

[9]  David Q. Mayne,et al.  Robust model predictive control using tubes , 2004, Autom..

[10]  Basil Kouvaritakis,et al.  Robust Tubes in Nonlinear Model Predictive Control , 2010, IEEE Transactions on Automatic Control.

[11]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[12]  Sebastian Engell,et al.  Online Optimizing Control: The Link Between Plant Economics and Process Control , 2009 .

[13]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[14]  Manfred Morari,et al.  On real-time robust model predictive control , 2014, Autom..

[15]  R. Sacksteder,et al.  On Hypersurfaces with no Negative Sectional Curvatures , 1960 .

[16]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .

[17]  Basil Kouvaritakis,et al.  Constrained receding horizon predictive control for nonlinear systems , 2002, Autom..

[18]  Basil Kouvaritakis,et al.  Robust MPC for linear systems with bounded multiplicative uncertainty , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[19]  Benoît Chachuat,et al.  Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs , 2015, J. Glob. Optim..

[20]  Angelika Bayer,et al.  Ellipsoidal Calculus For Estimation And Control , 2016 .

[21]  A. Hatley Mathematics in Science and Engineering , Volume 6: Differential- Difference Equations. Richard Bellman and Kenneth L. Cooke. Academic Press, New York and London. 462 pp. 114s. 6d. , 1963, The Journal of the Royal Aeronautical Society.

[22]  M. Kothare,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[23]  Sasa V. Rakovic,et al.  Offline tube design for efficient implementation of parameterized tube model predictive control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[24]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[25]  Moritz Diehl,et al.  Robust dynamic programming for min-max model predictive control of constrained uncertain systems , 2004, IEEE Transactions on Automatic Control.

[26]  Christos Panos,et al.  Fully parameterized tube model predictive control , 2012 .

[27]  A. Kurzhanski,et al.  On the Theory of Trajectory Tubes — A Mathematical Formalism for Uncertain Dynamics, Viability and Control , 1993 .

[28]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[29]  W. Ames Mathematics in Science and Engineering , 1999 .

[30]  Moritz Diehl,et al.  An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range , 2011, Autom..

[31]  Frank Allgöwer,et al.  Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems , 2011, CDC/ECC.

[32]  Stephen J. Wright,et al.  Conditions under which suboptimal nonlinear MPC is inherently robust , 2011, Syst. Control. Lett..

[33]  Benoît Chachuat,et al.  Branch-and-Lift Algorithm for Deterministic Global Optimization in Nonlinear Optimal Control , 2014, J. Optim. Theory Appl..

[34]  Manfred Morari,et al.  Infinite Horizon Performance Bounds for Uncertain Constrained Systems , 2013, IEEE Transactions on Automatic Control.

[35]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[36]  Paul I. Barton,et al.  Bounds on the reachable sets of nonlinear control systems , 2013, Autom..

[37]  Antonella Ferrara,et al.  Robust Model Predictive Control of continuous-time sampled-data nonlinear systems with Integral Sliding Mode , 2009, 2009 European Control Conference (ECC).

[38]  Frank Allgöwer,et al.  Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control , 2014, Autom..