REML estimation: asymptotic behavior and related topics

The restricted maximum likelihood (REML) estimates of dispersion parameters (variance components) in a general (non-normal) mixed model are defined as solutions of the REML equations. In this paper, we show the REML estimates are consistent if the model is asymptotically identifiable and infinitely informative under the (location) invariant class, and are asymptotically normal (A.N.) if in addition the model is asymptotically nondegenerate. The result does not require normality or boundedness of the rank p of design matrix of fixed effects. Moreover, we give a necessary and sufficient condition for asymptotic normality of Gaussian maximum likelihood estimates (MLE) in non-normal cases. As an application, we show for all unconfounded balanced mixed models of the analysis of variance the REML (ANOVA) estimates are consistent; and are also A.N. provided the models are nondegenerate; the MLE are consistent (A.N.) if and only if certain constraints on p are satisfied.

[1]  A. Welsh,et al.  ASYMPTOTIC PROPERTIES OF RESTRICTED MAXIMUM LIKELIHOOD (REML) ESTIMATES FOR HIERARCHICAL MIXED LINEAR MODELS , 1994 .

[2]  J. Pfanzagl Incidental Versus Random Nuisance Parameters , 1993 .

[3]  Noel A Cressie,et al.  The asymptotic distribution of REML estimators , 1993 .

[4]  Noel A Cressie,et al.  REML estimation in empirical Bayes smoothing of census undercount , 1992 .

[5]  W. N. Venables,et al.  Estimation of Variance Components and Applications. , 1990 .

[6]  G. Wahba Spline Models for Observational Data , 1990 .

[7]  J. Pfanzagl Estimation in semiparametric models , 1990 .

[8]  P. Guttorp,et al.  On the asymptotic distribution of quadratic forms in uniform order statistics , 1988 .

[9]  Brian R. Cullis,et al.  Residual maximum likelihood (REML) estimation of a neighbour model for field experiments , 1987 .

[10]  Peter F. de Jong,et al.  A central limit theorem for generalized quadratic forms , 1987 .

[11]  Dorothy L. Robinson,et al.  Estimation and Use of Variance Components , 1987 .

[12]  Peter H. Westfall,et al.  Asymptotic Normality of the Anova Estimates of Components of Variance in the Nonnormal, Unbalanced Hierarchal Mixed Model , 1986 .

[13]  A. Khuri,et al.  Variance Components Analysis: A Selective Literature Survey , 1985 .

[14]  Peter Green Linear models for field trials, smoothing and cross-validation , 1985 .

[15]  Man Kam Kwong,et al.  Hermitian Matrix Inequalities and a Conjecture , 1985 .

[16]  Adelchi Azzalini,et al.  Estimation and hypothesis testing for collections of autoregressive time series , 1984 .

[17]  O. Barndorff-Nielsen On a formula for the distribution of the maximum likelihood estimator , 1983 .

[18]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[19]  G. Styan,et al.  On the Existence and Uniqueness of the Maximum Likelihood Estimate of a Vector-Valued Parameter in Fixed-Size Samples , 1981 .

[20]  R. Thrum,et al.  Contributions to-asymptotic theory in regression models with linear covariance structure 1 , 1981 .

[21]  J. Miller,et al.  Explicit Maximum Likelihood Estimates from Balanced Data in the Mixed Model of the Analysis of Variance , 1980 .

[22]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[23]  K. Das Asymptotic Optimality of Restricted Maximum Likelihood Estimates for the Mixed Model , 1979 .

[24]  J. Miller,et al.  Asymptotic Properties of Maximum Likelihood Estimates in the Mixed Model of the Analysis of Variance , 1977 .

[25]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[26]  K. G. Brown,et al.  Asymptotic Behavior of Minque-Type Estimators of Variance Components , 1976 .

[27]  A. Zellner Bayesian and Non-Bayesian Analysis of the Regression Model with Multivariate Student- t Error Terms , 1976 .

[28]  D. Harville Bayesian inference for variance components using only error contrasts , 1974 .

[29]  T. W. Anderson Asymptotically Efficient Estimation of Covariance Matrices with Linear Structure , 1973 .

[30]  Lionel Weiss,et al.  Asymptotic Properties of Maximum Likelihood Estimators in Some Nonstandard Cases , 1971 .

[31]  H. Hartley,et al.  Maximum-likelihood estimation for the mixed analysis of variance model. , 1967, Biometrika.

[32]  Michel Loève,et al.  Probability Theory I , 1977 .

[33]  W. A. Thompson The Problem of Negative Estimates of Variance Components , 1962 .

[34]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[35]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .