QSPR Prediction of the Stability Constants of Gadolinium(III) Complexes for Magnetic Resonance Imaging

Gadolinium(III) complexes constitute the largest class of compounds used as contrast agents for Magnetic Resonance Imaging (MRI). A quantitative structure-property relationship (QSPR) machine-learning based method is applied to predict the thermodynamic stability constants of these complexes (log KGdL), a property commonly associated with the toxicity of such organometallic pharmaceuticals. In this approach, the log KGdL value of each complex is predicted by a graph machine, a combination of parametrized functions that encodes the 2D structure of the ligand. The efficiency of the predictive model is estimated on an independent test set; in addition, the method is shown to be effective (i) for estimating the stability constants of uncharacterized, newly synthesized polyamino-polycarboxylic compounds and (ii) for providing independent log KGdL estimations for complexants for which conflicting or questionable experimental data were reported. The exhaustive database of log KGdL values for 158 complexants, reported for potential application as contrast agents for MRI and used in the present study, is available in the Supporting Information (122 primary literature sources).

[1]  J. Majer,et al.  NEW COMPLEXANS. VI. ON THE STABILITY CONSTANTS OF COMPLEXES OF RACEMIC 2,3- DIAMINOBUTANE-N,N,N*SUP ,/,N*SUP ,/-TETRAACETIC ACID WITH LANTHANIDES, DETERMINED BY THE POLAROGRAPHIC METHOD FOR THEEXCHANGE EQUILIBRIA , 1966 .

[2]  Qing-You Zhang,et al.  Correlation Analysis of the Structures and Stability Constants of Gadolinium(III) Complexes , 2002, J. Chem. Inf. Comput. Sci..

[3]  Robert M. Smith,et al.  NIST standard reference database 46 version 8.0: NIST critically selected stability constants of metal complexes , 2004 .

[4]  G. Anderegg,et al.  Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications* (IUPAC Technical Report) , 2005 .

[5]  Jurriaan Huskens,et al.  Alkaline Earth Metal and Lanthanide(III) Complexes of Ligands Based upon 1,4,7,10-Tetraazacyclododecane-1,7-bis(acetic acid). , 1997, Inorganic chemistry.

[6]  Gregory R. Choppin,et al.  Thermodynamics and NMR studies of DTPA-bis(methoxyethylamide) and its derivatives. Protonation and complexation with Ln(III) , 1997 .

[7]  Fabienne Dioury,et al.  Synthesis of an hexadentate tricyclic tetraazadiacetic ligand as precursor for MRI contrast enhancement agents , 2009 .

[8]  Silvio Aime,et al.  Synthesis and NMR Studies of Three Pyridine-Containing Triaza Macrocyclic Triacetate Ligands and Their Complexes with Lanthanide Ions. , 1997, Inorganic chemistry.

[9]  G. Anderegg,et al.  CRITICAL EVALUATION OF STABILITY CONSTANTS OF METAL COMPLEXES OF COMPLEXONES FOR BIOMEDICAL AND ENVIRONMENTAL APPLICATIONS , 2005 .

[10]  Michael J. Welch,et al.  Molecular Mechanics Investigation of Gadolinium(III) Complexes. , 1996, Inorganic chemistry.

[11]  V. Jacques,et al.  New Classes of MRI Contrast Agents , 2002 .

[12]  M. Port,et al.  Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review , 2006, Fundamental & clinical pharmacology.

[13]  Arthur E. Martell,et al.  Stabilities of trivalent metal ion complexes of the tetraacetate derivatives of 12-, 13- and 14-membered tetraazamacrocycles , 1991 .

[14]  Chien-Hsun Lee,et al.  Synthesis and complexation of Gd3+, Ca2+, Cu2+ and Zn2+ by 3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid , 1998 .

[15]  Zoltan Kovacs,et al.  Equilibrium and formation/dissociation kinetics of some Ln(III)PCTA complexes. , 2006, Inorganic chemistry.

[16]  H.M.N.H. Irving,et al.  Complexes of meso- and dl-2,3-diaminobutane-N,N,N′,N′-tetraacetic acid with rare earth cations , 1971 .

[17]  É. Tóth,et al.  GdIII complexes with fast water exchange and high thermodynamic stability: potential building blocks for high-relaxivity MRI contrast agents. , 2003, Chemistry.

[18]  Ah Chung Tsoi,et al.  Computational Capabilities of Graph Neural Networks , 2009, IEEE Transactions on Neural Networks.

[19]  Yong Pyo Hong,et al.  Chemical Reactivity and Biological Activities for Tricyclic Enediyne Compound Possessing Fluorine , 2004 .

[20]  Twan Lammers,et al.  Comparison and systematic optimization of synthetic protocols for DOTA–hydrazide generation , 2013 .

[21]  G. Liu,et al.  Synthesis of two N′-2-pyridylmethyl and N′-2-hydroxypropyl derivatives of diethylenetriaminepentaacetic acid and the stabilities of their complexes with Ln3+, Ca2+, Cu2+ and Zn2+ , 2000 .

[22]  A Dean Sherry,et al.  Synthesis and Characterization of DOTA-(amide)(4) Derivatives: Equilibrium and Kinetic Behavior of Their Lanthanide(III) Complexes. , 2007, European journal of inorganic chemistry.

[23]  S. Morcos,et al.  Extracellular gadolinium contrast agents: differences in stability. , 2008, European journal of radiology.

[24]  Sven Gottschalk,et al.  Macrocyclic Gd3+ chelates attached to a silsesquioxane core as potential magnetic resonance imaging contrast agents: synthesis, physicochemical characterization, and stability studies. , 2010, Inorganic chemistry.

[25]  Michael F. Tweedle,et al.  Synthesis, characterization, and crystal structure of the gadolinium(III) chelate of (1R,4R,7R)-.alpha.,.alpha.',.alpha.''-trimethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3MA) , 1993 .

[26]  Rui A. Carvalho,et al.  H5dotasa (=(αRS)‐α‐(Carboxymethyl)‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic Acid), an Asymmetrical Derivative of H4dota (=1,4,7,10‐Tetraazacyclododecane‐1,4,7,10‐tetraacetic Acid) Substituted at One Acetate Pendant Arm: 1H‐NMR and Potentiometric Studies of the Ligand and Its Lanthanide(II , 2005 .

[27]  Maurizio Grandi,et al.  Synthesis, characterization, and 1/T1 NMRD profiles of gadolinium(III) complexes of monoamide derivatives of DOTA-like ligands. X-ray structure of the 10-[2-[[2-hydroxy-1-(hydroxymethyl)ethyl]amino]-1-[(phenylmethoxy)methyl]-2-oxoethyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid-gadolinium( , 1992 .

[28]  R. Delgado,et al.  Metal complexes of cyclic tetra-azatetra-acetic acids. , 1982, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[29]  Robert M. Smith,et al.  NIST Critically Selected Stability Constants of Metal Complexes Database , 2004 .

[30]  C. Allen Chang,et al.  Capillary electrophoresis, potentiometric and laser excited luminescence studies of lanthanide(III) complexes of 1,7-dicarboxymethyl-1,4,7,10-tetraazacyclododecane (DO2A)† , 1998 .

[31]  Fabienne Dioury,et al.  Synthesis of a tricyclic tetraazatriacetic ligand for gadolinium(III) as potential contrast agent for MRI , 2007 .

[32]  M D Adams,et al.  Synthesis and characterization of nonionic paramagnetic metal complexes as potential magnetic resonance imaging contrast agents. , 1990, Investigative radiology.

[33]  Joseph H. Reibenspies,et al.  The Amide Oxygen as a Donor Group. Metal Ion Complexing Properties of Tetra-N-acetamide Substituted Cyclen: A Crystallographic, NMR, Molecular Mechanics, and Thermodynamic Study , 1995 .

[34]  George Sosnovsky,et al.  Gadolinium, neodymium, praseodymium, thulium and ytterbium complexes as potential contrast enhancing agents for NMR imaging , 1988 .

[35]  V Simeon,et al.  [Physico-chemical study of the complexes of lanthanides with some derivatives of EDTA]. , 1968, Arhiv za higijenu rada i toksikologiju.

[36]  A. Sherry,et al.  Stability constants for Gd3+ binding to model DTPA‐conjugates and DTPA‐proteins: Implications for their use as magnetic resonance contrast agents , 1988, Magnetic resonance in medicine.

[37]  Gérard Dreyfus,et al.  From Hopfield nets to recursive networks to graph machines: Numerical machine learning for structured data , 2005, Theor. Comput. Sci..

[38]  David Esteban-Gómez,et al.  Lanthanide(III) complexes with ligands derived from a cyclen framework containing pyridinecarboxylate pendants. The effect of steric hindrance on the hydration number. , 2012, Inorganic chemistry.

[39]  Gregory R. Choppin,et al.  Thermodynamics and nuclear magnetic resonance studies of lanthanide complexation by ethylenediamine-NN′-diacetate-NN′-di-3-propionate , 1988 .

[40]  Gérard Dreyfus,et al.  Toward big data in QSAR/QSPR , 2014, 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[41]  C. Allen Chang,et al.  Characterization of Lanthanide Complexes with a Series of Amide-Based Macrocycles, Potential MRI Contrast Agents, Using Eu3+ Luminescence Spectroscopy and Molecular Mechanics , 1994 .

[42]  Bruce MacLennan,et al.  Unconventional Computation , 2009, Lecture Notes in Computer Science.

[43]  W. Cacheris,et al.  The relationship between thermodynamics and the toxicity of gadolinium complexes. , 1990, Magnetic resonance imaging.

[44]  C. A. Chang,et al.  Synthesis and metal complex selectivity of macrocyclic DTPA and EDTA bis(amide) ligands , 1992 .

[45]  J. Mintorovitch,et al.  Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths , 2005, Investigative radiology.

[46]  G. Liu,et al.  Synthesis of four derivatives of 3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid, the stabilities of their complexes with Ca(II), Cu(II), Zn(II) and lanthanide(III) and water-exchange investigations of Gd(III) chelates , 2001 .

[47]  Arthur E. Martell,et al.  Stability of metal ion complexes of N,N′-bis(2-hydroxybenzyl)ethylenediamine-N,N′-diacetic acid , 1994 .

[48]  J. L. Mackey,et al.  RARE EARTH CHELATE STABILITY CONSTANTS OF SOME AMINOPOLYCARBOXYLIC ACIDS1 , 1962 .

[49]  Martin W. Brechbiel,et al.  Preparation of the Novel Chelating Agent N-(2-Aminoethyl)-trans-1,2-diaminocyclohexane- N,N‘,N‘‘-pentaacetic Acid (H5CyDTPA), a Preorganized Analogue of Diethylenetriaminepentaacetic Acid (H5DTPA), and the Structures of BiIII(CyDTPA)2- and BiIII(H2DTPA) Complexes , 1996 .

[50]  Stefano Fontana,et al.  Thermodynamic and structural properties of Gd(III) complexes with polyamino-polycarboxylic ligands: basic compounds for the development of MRI contrast agents , 2000 .

[51]  Gérard Dreyfus,et al.  Local Overfitting Control via Leverages , 2002, Neural Computation.

[52]  T. Moeller,et al.  Observations on the rare earths—LXXV(1) , 1962 .

[53]  Peter Hogg,et al.  Magnetic resonance imaging contrast agents: Overview and perspectives , 2007 .

[54]  S. Mirzadeh,et al.  Physical parameters and biological stability of yttrium(III) diethylenetriaminepentaacetic acid derivative conjugates. , 1998, Journal of medicinal chemistry.

[55]  Éva Tóth,et al.  Equilibrium and kinetic studies on complexes of 10-[2,3-dihydroxy-(1-hydroxymethyl)-propyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triacetate , 1996 .

[56]  Johann Gasteiger,et al.  Canonical Numbering and Constitutional Symmetry , 1977, J. Chem. Inf. Comput. Sci..

[57]  William L. Jorgensen,et al.  Journal of Chemical Information and Modeling , 2005, J. Chem. Inf. Model..

[58]  A Goulon,et al.  Predicting activities without computing descriptors: graph machines for QSAR , 2007, SAR and QSAR in environmental research.

[59]  T. Koike,et al.  Thermodynamic and kinetic studies of lanthanide complexes of 1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N''''-pentaacetic acid and 1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N'''',N'''''-hexaacetic acid , 1991 .

[60]  Arthur E. Martell,et al.  Critical Stability Constants , 2011 .

[61]  Ki-Young Choi,et al.  Potentiometry of the Dioxa–Triaza Macrocyclic Complexes as Receptors for First-Row Transition and Lanthanide Metals , 1996 .

[62]  Ming-Hung Ou,et al.  Thermodynamic stability and physicochemical characterization of ligand (4S)-4-benzyl-3,6,10-tris(carboxymethyl)-3,6,10-triazadodecanedioic acid (H5[(S)-4-Bz-ttda]) and its complexes formed with lanthanides, calcium(II), zinc(II), and copper(II) ions , 2002 .

[63]  Pierre Baldi,et al.  The Principled Design of Large-Scale Recursive Neural Network Architectures--DAG-RNNs and the Protein Structure Prediction Problem , 2003, J. Mach. Learn. Res..

[64]  W P Cacheris,et al.  The Thermodynamics of Complexation of Lanthanide (III) DTPA‐Bisamide Complexes and Their Implication for Stability and Solution Structure , 1991, Investigative radiology.

[65]  Marie-France Bellin,et al.  MR contrast agents, the old and the new. , 2006, European journal of radiology.

[66]  M. PERIASAMY,et al.  The Synthesis and Screening of Nonionic Gadolinium (III) DTPA‐Bisamide Complexes as Magnetic Resonance Imaging Contrast Agents , 1991, Investigative radiology.

[67]  G. R. Choppin,et al.  The Stability Constant of Transition and Lanthanide Metal Ions Complexes with 15 Membered Macrocyclic Azacrown Ligands , 2004 .

[68]  Jean-Michel Siaugue,et al.  Regioselectively N-Functionalised 14-Membered Azapyridinomacrocycles Bearing Trialkanoic Acid Side Chains as Ligands for Lanthanide Ions , 2004 .

[69]  Enzo Terreno,et al.  Large relaxivity enhancement of paramagnetic lipid nanoparticles by restricting the local motions of the Gd(III) chelates. , 2010, Journal of the American Chemical Society.

[70]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.