Improving the detection sensitivity to primordial stochastic gravitational waves with reduced astrophysical foregrounds

One of the primary targets of third-generation (3G) ground-based gravitational wave (GW) detectors is detecting the stochastic GW background (SGWB) from early universe processes. The astrophysical foreground from compact binary mergers will be a major contamination to the background, which must be reduced to high precision to enable the detection of primordial background. In this work, we revisit the limit of foreground reduction computed in previous studies, point out potential problems in previous foreground cleaning methods and propose a novel cleaning method subtracting the approximate signal strain and removing the average residual power. With this method, the binary black hole foreground is reduced with fractional residual energy density below $10^{-4}$ for frequency $f\in (10, 10^2)$ Hz, below $10^{-3}$ for frequency $f\in (10^2, 10^3)$ Hz and below the detector sensitivity limit for all relevant frequencies in our simulations. Similar precision is achieved to clean the foreground from binary neutron stars (BNSs) that are above the detection threshold, so that the residual foreground is dominated by sub-threshold BNSs, which will be the next critical problem to solve for detecting the primordial SGWB in the 3G era.

[1]  V. Mandic,et al.  Detecting cosmological gravitational wave background after removal of compact binary coalescences in future gravitational wave detectors , 2022, Physical Review D.

[2]  M. Kamionkowski,et al.  Subtracting Compact Binary Foregrounds to Search for Subdominant Gravitational-Wave Backgrounds in Next-Generation Ground-Based Observatories , 2022, 2209.01310.

[3]  M. Kamionkowski,et al.  Compact Binary Foreground Subtraction in Next-Generation Ground-Based Observatories , 2022, 2209.01221.

[4]  B. Zackay,et al.  Removing degeneracy and multimodality in gravitational wave source parameters , 2022, Physical Review D.

[5]  T. Regimbau,et al.  Formalism for power spectral density estimation for non-identical and correlated noise using the null channel in Einstein Telescope , 2022, The European Physical Journal Plus.

[6]  A. Nitz,et al.  Utilizing the null stream of the Einstein Telescope , 2022, Physical Review D.

[7]  P. Meyers,et al.  Stochastic Gravitational-Wave Backgrounds: Current Detection Efforts and Future Prospects , 2022, Galaxies.

[8]  T. Regimbau The Quest for the Astrophysical Gravitational-Wave Background with Terrestrial Detectors , 2022, Symmetry.

[9]  J. Read,et al.  Science-driven Tunable Design of Cosmic Explorer Detectors , 2022, The Astrophysical Journal.

[10]  P. K. Panda,et al.  Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3 , 2021, Physical Review X.

[11]  Duncan A. Brown,et al.  A Horizon Study for Cosmic Explorer: Science, Observatories, and Community , 2021, 2109.09882.

[12]  T. Li,et al.  Signal space in the triangular network of the Einstein Telescope , 2021, Physical Review D.

[13]  W. Buchmüller,et al.  Stochastic gravitational-wave background from metastable cosmic strings , 2021, Journal of Cosmology and Astroparticle Physics.

[14]  J. Gair,et al.  Noisy neighbours: inference biases from overlapping gravitational-wave signals , 2021, Monthly Notices of the Royal Astronomical Society.

[15]  A. Nishizawa,et al.  Impacts of overlapping gravitational-wave signals on the parameter estimation: Toward the search for cosmological backgrounds , 2021, Physical Review D.

[16]  S. Sachdev,et al.  Toward inference of overlapping gravitational-wave signals , 2021, Physical Review D.

[17]  P. Meyers,et al.  Simultaneous estimation of astrophysical and cosmological stochastic gravitational-wave backgrounds with terrestrial detectors , 2020, 2011.05697.

[18]  S. Borhanian GWBENCH: a novel Fisher information package for gravitational-wave benchmarking , 2020, Classical and Quantum Gravity.

[19]  E. Thrane,et al.  Measuring the Primordial Gravitational-Wave Background in the Presence of Astrophysical Foregrounds. , 2020, Physical review letters.

[20]  T. Regimbau,et al.  startrack predictions of the stochastic gravitational-wave background from compact binary mergers , 2020, 2008.04890.

[21]  M. Hendry,et al.  The TianQin project: Current progress on science and technology , 2020, Progress of Theoretical and Experimental Physics.

[22]  J. Harms,et al.  Searching for cosmological gravitational-wave backgrounds with third-generation detectors in the presence of an astrophysical foreground , 2020, Physical Review D.

[23]  T. Regimbau,et al.  Subtracting compact binary foreground sources to reveal primordial gravitational-wave backgrounds , 2020, Physical Review D.

[24]  C. Broeck,et al.  Science case for the Einstein telescope , 2019, Journal of Cosmology and Astroparticle Physics.

[25]  Robert Eliot Spero,et al.  The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky , 2019, 1907.06482.

[26]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[27]  Robert W. Taylor,et al.  The US Program in Ground-Based Gravitational Wave Science: Contribution from the LIGO Laboratory , 2019, 1903.04615.

[28]  M. S. Shahriar,et al.  Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , 2018, The Astrophysical Journal.

[29]  Nelson Christensen,et al.  Stochastic gravitational wave backgrounds , 2018, Reports on progress in physics. Physical Society.

[30]  M. Hindmarsh,et al.  Gravitational waves from vacuum first-order phase transitions: From the envelope to the lattice , 2018, Physical Review D.

[31]  Chiara Caprini,et al.  Cosmological backgrounds of gravitational waves , 2018, Classical and Quantum Gravity.

[32]  Rory Smith,et al.  Optimal Search for an Astrophysical Gravitational-Wave Background , 2017, 1712.00688.

[33]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[34]  R. Cai,et al.  The Gravitational-Wave Physics , 2017, 1703.00187.

[35]  T. Regimbau,et al.  Digging Deeper: Observing Primordial Gravitational Waves below the Binary-Black-Hole-Produced Stochastic Background. , 2016, Physical review letters.

[36]  B. Ananthanarayan Annual Review of Nuclear and Particle Science, 2015 , 2016 .

[37]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[38]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.

[39]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[40]  Delphine Perrodin,et al.  European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background , 2015, 1504.03692.

[41]  David I. Kaiser,et al.  Nonperturbative Dynamics Of Reheating After Inflation: A Review , 2014, 1410.3808.

[42]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[43]  C. Moore,et al.  Gravitational-wave sensitivity curves , 2014, 1408.0740.

[44]  E. Thrane,et al.  Sensitivity curves for searches for gravitational-wave backgrounds , 2013, 1310.5300.

[45]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[46]  E. Howell,et al.  On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers , 2012, 1209.0595.

[47]  V. Mandic,et al.  Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors , 2011, 1112.1898.

[48]  S. Portegies Zwart,et al.  Imprint of the merger and ring-down on the gravitational wave background from black hole binaries coalescence , 2011, 1111.6125.

[49]  David Blair,et al.  STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM COALESCING BINARY BLACK HOLES , 2011, 1104.3565.

[50]  P. Ajith,et al.  Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.

[51]  F. Cyr-Racine,et al.  Reheating in Inflationary Cosmology: Theory and Applications , 2010, 1001.2600.

[52]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[53]  M Hannam,et al.  Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.

[54]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[55]  G. Hobbs The Parkes Pulsar Timing Array , 2009, 1307.2629.

[56]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[57]  J. Harms,et al.  Subtraction-noise projection in gravitational-wave detector networks , 2008, 0803.0226.

[58]  R. Durrer,et al.  Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach , 2007, 0711.2593.

[59]  M. Vallisneri,et al.  LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms , 2007, 0707.2982.

[60]  J. Harms,et al.  Big Bang Observer and the neutron-star-binary subtraction problem , 2005, gr-qc/0511092.

[61]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[62]  S. Drasco,et al.  Detection methods for non-Gaussian gravitational wave stochastic backgrounds , 2002, gr-qc/0210032.

[63]  E. Phinney A Practical Theorem on Gravitational Wave Backgrounds , 2001, astro-ph/0108028.

[64]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. II. The waves’ information and its extraction, with and without templates , 1997, gr-qc/9710129.

[65]  B. Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1997, gr-qc/9710117.

[66]  B. Allen,et al.  Detection of anisotropies in the gravitational-wave stochastic background , 1996, gr-qc/9607068.

[67]  B. Allen The Stochastic Gravity-Wave Background: Sources and Detection , 1996, gr-qc/9604033.

[68]  E. P. S. Shellard,et al.  Cosmic Strings and Other Topological Defects , 1995 .

[69]  T. Kibble,et al.  Cosmic strings , 1994, hep-ph/9411342.

[70]  Turner,et al.  Gravitational radiation from first-order phase transitions. , 1993, Physical review. D, Particles and fields.

[71]  Weinberg,et al.  Bubble nucleation in first-order inflation and other cosmological phase transitions. , 1992, Physical review. D, Particles and fields.

[72]  Watkins,et al.  Gravitational radiation from colliding vacuum bubbles. , 1992, Physical review. D, Particles and fields.

[73]  Caldwell,et al.  Cosmological constraints on cosmic-string gravitational radiation. , 1992, Physical review. D, Particles and fields.

[74]  Allen,et al.  Gravitational radiation from cosmic strings. , 1992, Physical review. D, Particles and fields.

[75]  M. Rees,et al.  Gravitational interactions of cosmic strings , 1984, Nature.

[76]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[77]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[78]  Parampreet Singh,et al.  Subtraction of correlated noise in global networks of gravitational-wave interferometers , 2016 .

[79]  M. Mclaughlin The North American Nanohertz Observatory for Gravitational Waves , 2013 .

[80]  S. Kurennoy Gravitational Waves from Inflation , 2008 .

[81]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.