Multiplicative Perturbation Bounds for Multivariate Multiple Linear Regression in Schatten p-Norms

Multivariate multiple linear regression (MMLR), which occurs in a number of practical applications, generalizes traditional least squares (multivariate linear regression) to multiple right-hand sides. We extend recent MLR analyses to sketched MMLR in general Schatten $p$-norms by interpreting the sketched problem as a multiplicative perturbation. Our work represents an extension of Maher's results on Schatten $p$-norms. We derive expressions for the exact and perturbed solutions in terms of projectors for easy geometric interpretation. We also present a geometric interpretation of the action of the sketching matrix in terms of relevant subspaces. We show that a key term in assessing the accuracy of the sketched MMLR solution can be viewed as a tangent of a largest principal angle between subspaces under some assumptions. Our results enable additional interpretation of the difference between an orthogonal and oblique projector with the same range.

[1]  T. Ouarda,et al.  Multisite statistical downscaling model for daily precipitation combined by multivariate multiple linear regression and stochastic weather generator , 2012, Climatic Change.

[2]  G. Stewart On scaled projections and pseudoinverses , 1989 .

[3]  S. Muthukrishnan,et al.  Faster least squares approximation , 2007, Numerische Mathematik.

[4]  Mappings approximately preserving orthogonality in normed spaces , 2010 .

[5]  David P. Woodruff Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..

[6]  Sabine Van Huffel,et al.  The Total Least Squares Problem in AX ≈ B: A New Classification with the Relationship to the Classical Works , 2011, SIAM J. Matrix Anal. Appl..

[7]  Zlatko Drmac,et al.  The Discrete Empirical Interpolation Method: Canonical Structure and Formulation in Weighted Inner Product Spaces , 2017, SIAM J. Matrix Anal. Appl..

[8]  Christos Boutsidis,et al.  Random Projections for the Nonnegative Least-Squares Problem , 2008, ArXiv.

[9]  P. Maher Some singular values, and unitarily invariant norm, inequalities , 2007 .

[10]  Bernard Chazelle,et al.  The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..

[11]  Zdenek Strakos,et al.  The Core Problem within a Linear Approximation Problem $AX\approx B$ with Multiple Right-Hand Sides , 2013, SIAM J. Matrix Anal. Appl..

[12]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[13]  Ilse C. F. Ipsen,et al.  A Geometric Analysis of Model- and Algorithm-Induced Uncertainties for Randomized Least Squares Regression , 2018 .

[14]  Feiping Nie,et al.  Optimal mean two-dimensional principal component analysis with F-norm minimization , 2017, Pattern Recognit..

[15]  R. Welsch,et al.  The Hat Matrix in Regression and ANOVA , 1978 .

[16]  Philip Maher,et al.  Some norm inequalities concerning generalized inverses, 2 , 1992 .

[17]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[18]  Michael W. Mahoney Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..

[19]  Ying Tai,et al.  Nuclear Norm Based Matrix Regression with Applications to Face Recognition with Occlusion and Illumination Changes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  P. Maher Some operator inequalities concerning generalized inverses , 1990 .

[21]  Ilse C. F. Ipsen,et al.  The Effect of Coherence on Sampling from Matrices with Orthonormal Columns, and Preconditioned Least Squares Problems , 2014, SIAM J. Matrix Anal. Appl..

[22]  J. Friedman,et al.  Predicting Multivariate Responses in Multiple Linear Regression , 1997 .

[23]  Sheng Wang,et al.  Two-dimensional discriminant analysis based on Schatten p-norm for image feature extraction , 2017, J. Vis. Commun. Image Represent..

[24]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[25]  Jian Yang,et al.  Schatten p-Norm Based Matrix Regression Model for Image Classification , 2014, CCPR.

[26]  Sivan Toledo,et al.  Blendenpik: Supercharging LAPACK's Least-Squares Solver , 2010, SIAM J. Sci. Comput..

[27]  Ian J. Wang EXAMINING THE FULL EFFECTS OF LANDSCAPE HETEROGENEITY ON SPATIAL GENETIC VARIATION: A MULTIPLE MATRIX REGRESSION APPROACH FOR QUANTIFYING GEOGRAPHIC AND ECOLOGICAL ISOLATION , 2013, Evolution; international journal of organic evolution.

[28]  Michael W. Mahoney,et al.  A Statistical Perspective on Randomized Sketching for Ordinary Least-Squares , 2014, J. Mach. Learn. Res..

[29]  Lexin Li,et al.  Regularized matrix regression , 2012, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[30]  Andrew V. Knyazev,et al.  Angles between subspaces and their tangents , 2012, J. Num. Math..

[31]  V. Rokhlin,et al.  A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.

[32]  A. Turnšek On mappings approximately preserving orthogonality , 2007 .

[33]  Michael Unser,et al.  Hessian Schatten-Norm Regularization for Linear Inverse Problems , 2012, IEEE Transactions on Image Processing.

[34]  Yousef Saad,et al.  Fast Estimation of tr(f(A)) via Stochastic Lanczos Quadrature , 2017, SIAM J. Matrix Anal. Appl..

[35]  Z. Strakos,et al.  THE CORE PROBLEM WITHIN A LINEAR APPROXIMATION PROBLEM AX ≈ B WITH MULTIPLE RIGHT-HAND SIDES∗ , 2012 .

[36]  Michael A. Saunders,et al.  LSRN: A Parallel Iterative Solver for Strongly Over- or Underdetermined Systems , 2011, SIAM J. Sci. Comput..

[37]  Rassoul Noorossana,et al.  Phase II monitoring of multivariate multiple linear regression profiles , 2011, Qual. Reliab. Eng. Int..

[38]  Mahmoud A. Mahmoud,et al.  Statistical monitoring of multivariate multiple linear regression profiles in phase I with calibration application , 2010, Qual. Reliab. Eng. Int..

[39]  Shusen Wang,et al.  Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging , 2017, ICML.

[40]  S. Chatterjee,et al.  Influential Observations, High Leverage Points, and Outliers in Linear Regression , 1986 .

[41]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[42]  Nicolai Meinshausen,et al.  Random Projections for Large-Scale Regression , 2017, 1701.05325.

[43]  Tamara G. Kolda,et al.  Practical Leverage-Based Sampling for Low-Rank Tensor Decomposition , 2020, ArXiv.

[44]  Jinwoo Shin,et al.  Approximating Spectral Sums of Large-Scale Matrices using Stochastic Chebyshev Approximations , 2017, SIAM J. Sci. Comput..

[45]  S. Muthukrishnan,et al.  Sampling algorithms for l2 regression and applications , 2006, SODA '06.

[46]  Alevs vCern'y,et al.  Characterization of the oblique projector U(VU)†V with application to constrained least squares , 2008, 0809.4500.

[47]  G. W. Stewart,et al.  On the Numerical Analysis of Oblique Projectors , 2011, SIAM J. Matrix Anal. Appl..

[48]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[49]  Bin Nan,et al.  Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure , 2015, Biometrics.

[50]  Rong Zhu,et al.  Optimal Subsampling for Large Sample Logistic Regression , 2017, Journal of the American Statistical Association.

[51]  Roummel F. Marcia,et al.  Computationally Efficient Decompositions of Oblique Projection Matrices , 2020, SIAM J. Matrix Anal. Appl..

[52]  Ji-guang Sun Optimal backward perturbation bounds for the linear least-squares problem with multiple right-hand sides , 1996 .

[53]  Feiping Nie,et al.  On the schatten norm for matrix based subspace learning and classification , 2016, Neurocomputing.

[54]  J. Chmieliński Linear mappings approximately preserving orthogonality , 2005 .

[55]  Per Christian Hansen Oblique projections and standard-form transformations for discrete inverse problems , 2013, Numer. Linear Algebra Appl..

[56]  Roy E. Welsch,et al.  Efficient Computing of Regression Diagnostics , 1981 .

[57]  Takashi Tsuchiya,et al.  Proximity of Weighted and Layered Least Squares Solutions , 2009, SIAM J. Matrix Anal. Appl..

[58]  Alvaro R. De Pierro,et al.  Upper Perturbation Bounds of Weighted Projections, Weighted and Constrained Least Squares Problems , 2000, SIAM J. Matrix Anal. Appl..

[59]  Ping Ma,et al.  A statistical perspective on algorithmic leveraging , 2013, J. Mach. Learn. Res..