THE EXACT MINIMUM NUMBER OF TRIANGLES IN GRAPHS WITH GIVEN ORDER AND SIZE

What is the minimum number of triangles in a graph of given order and size? Motivated by earlier results of Mantel and Turán, Rademacher solved the first nontrivial case of this problem in 1941. The problem was revived by Erdős in 1955; it is now known as the Erdős–Rademacher problem. After attracting much attention, it was solved asymptotically in a major breakthrough by Razborov in 2008. In this paper, we provide an exact solution for all large graphs whose edge density is bounded away from $1$, which in this range confirms a conjecture of Lovász and Simonovits from 1975. Furthermore, we give a description of the extremal graphs.

[1]  Dhruv Mubayi Counting substructures I: color critical graphs , 2009 .

[2]  J. Moon On the Number of Complete Subgraphs of a Graph , 1965, Canadian Mathematical Bulletin.

[3]  Péter Csikvári Note on the Smallest Root of the Independence Polynomial , 2013, Comb. Probab. Comput..

[4]  Hao Huang,et al.  On the 3‐Local Profiles of Graphs , 2012, J. Graph Theory.

[5]  Alexander A. Razborov,et al.  Flag algebras , 2007, Journal of Symbolic Logic.

[6]  E. A. Nordhaus,et al.  Triangles in an Ordinary Graph , 1963, Canadian Journal of Mathematics.

[7]  W. Marsden I and J , 2012 .

[8]  Alexander A. Razborov,et al.  Asymptotic Structure of Graphs with the Minimum Number of Triangles , 2017, Comb. Probab. Comput..

[9]  Jeong Han Kim,et al.  Two Approaches to Sidorenko's Conjecture , 2013, 1310.4383.

[10]  Alexander Sidorenko,et al.  A correlation inequality for bipartite graphs , 1993, Graphs Comb..

[11]  P. Erdös On an extremal problem in graph theory , 1970 .

[12]  Vladimir Nikiforov,et al.  The number of cliques in graphs of given order and size , 2007, 0710.2305.

[13]  Alexander A. Razborov,et al.  On the Minimal Density of Triangles in Graphs , 2008, Combinatorics, Probability and Computing.

[14]  Viktor Harangi,et al.  On the density of triangles and squares in regular finite and unimodular random graphs , 2011, Comb..

[15]  Miklós Simonovits,et al.  Supersaturated graphs and hypergraphs , 1983, Comb..

[16]  B. Szegedy,et al.  On the logarithimic calculus and Sidorenko's conjecture , 2011, 1107.1153.

[17]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[18]  I. Kátai On a problem of P. Erdös , 1970 .

[19]  Hamed Hatami Graph norms and Sidorenko’s conjecture , 2008, 0806.0047.

[20]  Oleg Pikhurko,et al.  Supersaturation problem for color-critical graphs , 2017, J. Comb. Theory, Ser. B.

[21]  David Conlon,et al.  Some advances on Sidorenko's conjecture , 2015, J. Lond. Math. Soc..

[22]  M. Simonovits,et al.  On the number of complete subgraphs of a graph II , 1983 .

[23]  Gyula O. H. Katona,et al.  Intersection theorems for systems of finite sets , 1964 .

[24]  Ki Hang Kim,et al.  On a problem of Turán , 1983 .

[25]  D. Král,et al.  Densities of 3-vertex graphs , 2016, 1610.02446.

[26]  Oleg Pikhurko,et al.  Supersaturation Problem for the Bowtie , 2017, Electron. Notes Discret. Math..

[27]  A. Goodman On Sets of Acquaintances and Strangers at any Party , 1959 .

[28]  Hamed Hatami,et al.  Undecidability of linear inequalities in graph homomorphism densities , 2010, 1005.2382.

[29]  Paul Erdös,et al.  On a theorem of Rademacher-Turán , 1962 .

[30]  O. Pikhurko,et al.  Asymptotic Structure for the Clique Density Theorem , 2019, discrete Analysis.

[31]  David C. Fisher Lower bounds on the number of triangles in a graph , 1989, J. Graph Theory.

[32]  B. Bollobás On complete subgraphs of different orders , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[35]  Massimo Santini,et al.  Clique polynomials have a unique root of smallest modulus , 2000, Inf. Process. Lett..

[36]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[37]  B. Szegedy An information theoretic approach to Sidorenko's conjecture , 2014, 1406.6738.

[38]  Christian Reiher,et al.  The clique density theorem , 2012, 1212.2454.

[39]  D. Conlon,et al.  An Approximate Version of Sidorenko’s Conjecture , 2010, 1004.4236.