A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites

Abstract We develop a continuum theory for thermoelectric bodies following the framework of continuum mechanics and conforming to general principles of thermodynamics. For steady states, the governing equations for local fields are intrinsically nonlinear. However, under conditions of small variations of electrochemical potential, temperature and their gradients, the governing equations can be reduced to a linear elliptic system and conveniently solved to determine local fields in thermoelectric bodies. The linear theory is further applied to predict effective properties of thermoelectric composites. In particular, explicit formula of effective properties are obtained for simple microstructures of laminates and periodic E-inclusions, which imply useful design principles for engineering thermoelectric composites.

[1]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[2]  G. Milton The Theory of Composites , 2002 .

[3]  Simon M. J. Lyons Introduction to stochastic differential equations , 2011 .

[4]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[5]  Zhifeng Ren,et al.  Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach , 2010 .

[6]  Matteo Chiesa,et al.  Photovoltaic-thermoelectric hybrid systems: A general optimization methodology , 2008 .

[7]  Perry H Leo,et al.  Periodic Inclusion—Matrix Microstructures with Constant Field Inclusions , 2007 .

[8]  G. Mahan Chapter 3 - Thermionic Refrigeration , 2001 .

[9]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[10]  Enhancement of the Thermoelectric Figure of Merit in Gated Bismuth Telluride Nanowires , 2009 .

[11]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[12]  Gerald D. Mahan,et al.  Density variations in thermoelectrics , 2000 .

[13]  C. Van Hoof,et al.  Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes , 2007, IEEE Sensors Journal.

[14]  D. Rowe Thermoelectrics Handbook , 2005 .

[15]  C. Domenicali,et al.  Irreversible Thermodynamics of Thermoelectricity , 1954 .

[16]  R. Bruce Lindsay,et al.  Thermodynamics of Irreversible Processes , 1971 .

[17]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[18]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[19]  Feiyue Ma,et al.  On the effective thermoelectric properties of layered heterogeneous medium , 2012 .

[20]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[21]  H. A. Hassan,et al.  THERMOELECTRIC PROPERTIES OF p-TYPE , 2012 .

[22]  Dario Narducci,et al.  Do we really need high thermoelectric figures of merit? A critical appraisal to the power conversion efficiency of thermoelectric materials , 2011 .

[23]  R. Wendt Simplified transport theory for electrolyte solutions , 1974 .

[24]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[25]  Y. Okamoto,et al.  Thermoelectric properties of porous zinc oxide ceramics doped with praseodymium , 2008 .

[26]  O. Yamashita,et al.  Effect of the thickness of Bi–Te compound and Cu electrode on the resultant Seebeck coefficient in touching Cu/Bi–Te/Cu composites , 2007 .

[27]  K. Satou,et al.  Enhancement of the thermoelectric figure of merit in M∕T∕M (M=Cu or Ni and T=Bi0.88Sb0.12) composite materials , 2005 .

[28]  G. V. Chester,et al.  Solid State Physics , 2000 .

[29]  B. D. Coleman,et al.  On the Reciprocal Relations of Onsager , 1960 .

[30]  R. James,et al.  New extremal inclusions and their applications to two-phase composites , 2021, 2107.04088.

[31]  H. Callen,et al.  The Application of Onsager's Reciprocal Relations to Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects , 1948 .

[32]  D. Whiffen Thermodynamics , 1973, Nature.

[33]  L. Beda Thermal physics , 1994 .

[34]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[35]  D. Bergman,et al.  Enhancement of thermoelectric power factor in composite thermoelectrics , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[36]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[37]  W. Luder,et al.  Thermodynamics of Irreversible Processes (de Groot, S. R.) , 1952 .

[38]  Toka Diagana,et al.  An Introduction to Stochastic Differential Equations , 2011 .

[39]  R. Barnard,et al.  Thermoelectricity in Metals and Alloys , 1974 .

[40]  Saffa Riffat,et al.  Thermoelectrics: a review of present and potential applications , 2003 .

[41]  David Michael Rowe,et al.  Thermoelectrics, an environmentally-friendly source of electrical power , 1999 .

[42]  George S. Nolas,et al.  Recent Developments in Bulk Thermoelectric Materials , 2006 .

[43]  D. J. Bergman,et al.  Thermoelectric properties of a composite medium , 1991 .

[44]  A. Yamamoto,et al.  Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1−x prepared via bulk mechanical alloying and hot pressing , 2000 .

[45]  H. B. G. Casimir,et al.  On Onsager's Principle of Microscopic Reversibility , 1945 .

[46]  William A. Goddard,et al.  Silicon Nanowires as Efficient Thermoelectric Materials. , 2008 .

[47]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[48]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[50]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .