Meter-long and robust supramolecular strands encapsulated in hydrogel jackets.

[1]  Andrew R. Hirst,et al.  “High‐Tech”‐Anwendungen von supramolekularen nanostrukturierten Gelmaterialien – von der regenerativen Medizin bis hin zu elektronischen Bauelementen , 2008 .

[2]  Yi Shi,et al.  Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage , 2010, International journal of molecular sciences.

[3]  Masaru Yoshida,et al.  High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder , 2010, Nature.

[4]  I. Hamachi,et al.  Mechanical reinforcement of a supramolecular hydrogel comprising an artificial glyco-lipid through supramolecular copolymerization. , 2008, Macromolecular bioscience.

[5]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[6]  A. Yassin,et al.  Synthesis of a fluoresceine-derivatized fluorene and its electrogenerated copolymers with fluorene: New pH indicators , 2008 .

[7]  Jiyu Fang,et al.  Two-dimensional ordered arrays of aligned lipid tubules on substrates with microfluidic networks. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[8]  Samuel I. Stupp,et al.  A Self-Assembly Pathway to Aligned Monodomain Gels , 2010, Nature materials.

[9]  Markus J Buehler,et al.  Strength in numbers. , 2010, Nature nanotechnology.

[10]  Krista L. Niece,et al.  Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers , 2004, Science.

[11]  D. T. McQuade,et al.  Removable colored coatings based on calcium alginate hydrogels. , 2006, Biomacromolecules.

[12]  M. Wan,et al.  Self‐Assembling Sub‐Micrometer‐Sized Tube Junctions and Dendrites of Conducting Polymers , 2003 .

[13]  Wei Zhou,et al.  True solutions of single-walled carbon nanotubes for assembly into macroscopic materials , 2009, Nature Nanotechnology.

[14]  David K Smith,et al.  High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. , 2008, Angewandte Chemie.

[15]  S. Shinkai,et al.  Post-polymerization of preorganized assemblies for creating shape-controlled functional materials. , 2007, Chemical Society reviews.

[16]  Yongfeng Zhou,et al.  Supramolecular Self-Assembly of Macroscopic Tubes , 2004, Science.

[17]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[18]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[19]  Franco Cacialli,et al.  Electric‐Field‐Assisted Alignment of Supramolecular Fibers , 2006 .

[20]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[21]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[22]  Nunzio Tuccitto,et al.  Highly conductive approximately 40-nm-long molecular wires assembled by stepwise incorporation of metal centres. , 2009, Nature materials.

[23]  P. Ma,et al.  Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. , 2001, Biomaterials.

[24]  Gregory F. Payne,et al.  Electroaddressing of Cell Populations by Co‐Deposition with Calcium Alginate Hydrogels , 2009 .

[25]  John Alexander,et al.  Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform. , 2006, Biomaterials.

[26]  B. H. Weiller,et al.  Polyaniline nanofibers: facile synthesis and chemical sensors. , 2003, Journal of the American Chemical Society.

[27]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[28]  Kenji Kaneko,et al.  Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release. , 2009, Journal of the American Chemical Society.

[29]  Shuguang Zhang Fabrication of novel biomaterials through molecular self-assembly , 2003, Nature Biotechnology.

[30]  Robert Johann,et al.  Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation. , 2005, Lab on a chip.

[31]  Chun-Guey Wu,et al.  Conducting Polyaniline Filaments in a Mesoporous Channel Host , 1994, Science.

[32]  M. Miyazaki,et al.  Direct Observation of Long-strand DNA Stretching in Microchannel Flow , 2004 .