Randomized final-state problem for the Zakharov system in dimension three

Abstract. We consider the final-state problem for the Zakharov system in the energy space in three space dimensions. For (u+, v+) ∈ H × L without any size restriction, symmetry assumption or additional angular regularity, we perform a physical-space randomization on u+ and an angular randomization on v+ yielding random final states (uω+, v ω +). We obtain that for almost every ω, there is a unique solution of the Zakharov system scattering to the final state (uω+, v ω +). The key ingredient in the proof is the use of time-weighted norms and generalized Strichartz estimates which are accessible due to the randomization.

[1]  J. Shatah,et al.  Scattering for the Zakharov System in 3 Dimensions , 2012, 1206.3473.

[2]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[3]  K. Nakanishi,et al.  Global dynamics below the ground state energy for the Zakharov system in the 3D radial case , 2012, 1206.2457.

[4]  Kenji Nakanishi,et al.  Well-posedness and scattering for the Zakharov system in four dimensions , 2015, 1504.01073.

[5]  Luis Vega,et al.  On the Zakharov and Zakharov-Schulman Systems , 1995 .

[6]  Joachim Krieger,et al.  Randomization improved Strichartz estimates and global well-posedness for supercritical data , 2019, Annales de l'Institut Fourier.

[7]  K. Nakanishi,et al.  Uniqueness of solutions for zakharov systems , 2009 .

[8]  Dana Mendelson,et al.  Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data , 2017, American Journal of Mathematics.

[9]  K. Nakanishi,et al.  Energy convergence for singular limits of Zakharov type systems , 2008 .

[10]  J. Ginibre,et al.  On the Cauchy Problem for the Zakharov System , 1997 .

[11]  Michael I. Weinstein,et al.  The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence , 1986 .

[12]  V. Zakharov Collapse of Langmuir Waves , 1972 .

[13]  Benjamin Texier,et al.  Derivation of the Zakharov Equations , 2006, math/0603092.

[14]  'Arp'ad B'enyi,et al.  Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ³ , 2017, Transactions of the American Mathematical Society, Series B.

[15]  Dana Mendelson,et al.  Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation , 2018, Advances in Mathematics.

[16]  T. Ozawa,et al.  Global existence and asymptotic behavior of solutions for the Zakharov equations in three space dimensions , 1993 .

[17]  K. Nakanishi,et al.  Randomized final-data problem for systems of nonlinear Schrödinger equations and the Gross–Pitaevskii equation , 2018, Mathematical Research Letters.

[18]  Á. Bényi,et al.  On the Probabilistic Cauchy Theory of the Cubic Nonlinear Schrödinger Equation on Rd, d≥3 , 2014, 1405.7327.

[19]  Bjoern Bringmann Almost sure scattering for the energy critical nonlinear wave equation , 2018, American Journal of Mathematics.

[20]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations II: a global existence result , 2007, 0707.1448.

[21]  'Arp'ad B'enyi,et al.  WIENER RANDOMIZATION ON UNBOUNDED DOMAINS AND AN APPLICATION TO ALMOST SURE WELL-POSEDNESS OF NLS , 2014, 1405.7326.

[22]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[23]  Bjoern Bringmann Almost-sure scattering for the radial energy-critical nonlinear wave equation in three dimensions , 2018, 1804.09268.

[24]  T. Tao A P ] 2 0 O ct 2 00 4 SPHERICALLY AVERAGED ENDPOINT STRICHARTZ ESTIMATES FOR THE TWO-DIMENSIONAL SCHRÖDINGER EQUATION 1 , 2022 .

[25]  J. Bourgain,et al.  On wellposedness of the Zakharov system , 1996 .

[26]  T. Ozawa,et al.  The nonlinear Schrödinger limit and the initial layer of the Zakharov equations , 1992, Differential and Integral Equations.

[27]  J. Bourgain Periodic nonlinear Schrödinger equation and invariant measures , 1994 .

[28]  N. Tzvetkov Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation , 2006, math/0610626.

[29]  A. Shimomura SCATTERING THEORY FOR ZAKHAROV EQUATIONS IN THREE-DIMENSIONAL SPACE WITH LARGE DATA , 2004 .

[30]  Dana Mendelson,et al.  Random Data Cauchy Theory for Nonlinear Wave Equations of Power-Type on ℝ3 , 2014 .

[31]  Angular Regularity and Strichartz Estimates for the Wave Equation , 2004, math/0402192.

[32]  J. Holmer,et al.  On the 2D Zakharov system with L2 Schrödinger data , 2008, 0811.3047.

[33]  S. Herr,et al.  Convolutions of singular measures and applications to the Zakharov system , 2010, 1009.3250.

[34]  A Sharp Condition for Scattering of the Radial 3D Cubic Nonlinear Schrödinger Equation , 2007, math/0703235.

[35]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations I: local theory , 2007, 0707.1447.

[36]  R. Balan,et al.  Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS , 2014 .

[37]  Jean Bourgain,et al.  Invariant measures for the2D-defocusing nonlinear Schrödinger equation , 1996 .

[38]  Jason Murphy Random data final-state problem for the mass-subcritical NLS in $L^2$ , 2017, Proceedings of the American Mathematical Society.

[39]  A. Kiselev,et al.  Maximal Functions Associated to Filtrations , 2001 .

[40]  G. Lebeau,et al.  Injections de Sobolev probabilistes et applications , 2011, 1111.7310.

[41]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[42]  K. Nakanishi,et al.  Small Energy Scattering for the Zakharov System with Radial Symmetry , 2012, 1203.3959.

[43]  T. Colin,et al.  Justification of the Zakharov Model from Klein–Gordon-Wave Systems , 2005 .

[44]  F. Merle Blow-up results of viriel type for Zakharov equations , 1996 .

[45]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[46]  R. Killip,et al.  Almost sure scattering for the energy-critical NLS with radial data below , 2017, Communications in Partial Differential Equations.

[47]  Zihua Guo Sharp spherically averaged Strichartz estimates for the Schrödinger equation , 2014, 1406.2525.

[48]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[49]  K. Nakanishi,et al.  Generalized Strichartz Estimates and Scattering for 3D Zakharov System , 2013, 1305.2990.