IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor

Inspired by Weber's Law, this paper proposes a simple, yet very powerful and robust local descriptor, called the Weber Local Descriptor (WLD). It is based on the fact that human perception of a pattern depends not only on the change of a stimulus (such as sound, lighting) but also on the original intensity of the stimulus. Specifically, WLD consists of two components: differential excitation and orientation. The differential excitation component is a function of the ratio between two terms: One is the relative intensity differences of a current pixel against its neighbors, the other is the intensity of the current pixel. The orientation component is the gradient orientation of the current pixel. For a given image, we use the two components to construct a concatenated WLD histogram. Experimental results on the Brodatz and KTH-TIPS2-a texture databases show that WLD impressively outperforms the other widely used descriptors (e.g., Gabor and SIFT). In addition, experimental results on human face detection also show a promising performance comparable to the best known results on the MIT+CMU frontal face test set, the AR face data set, and the CMU profile test set.

[1]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[2]  Kurt Konolige,et al.  CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching , 2008, ECCV.

[3]  Michael H. F. Wilkinson,et al.  Morphological hat-transform scale spaces and their use in pattern classification , 2004, Pattern Recognit..

[4]  M. Pietikäinen,et al.  A robust descriptor based on Weber’s Law , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Wen Gao,et al.  Matrix-Structural Learning (MSL) of Cascaded Classifier from Enormous Training Set , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Takayoshi Yamashita,et al.  Incremental Learning of Boosted Face Detector , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[7]  Tat-Jen Cham,et al.  Fast training and selection of Haar features using statistics in boosting-based face detection , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[8]  Cordelia Schmid,et al.  Maximally Stable Local Description for Scale Selection , 2006, ECCV.

[9]  Sébastien Marcel,et al.  Face Authentication Using Adapted Local Binary Pattern Histograms , 2006, ECCV.

[10]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[11]  H. Damasio,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence: Special Issue on Perceptual Organization in Computer Vision , 1998 .

[12]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[15]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  K. Chamnongthai,et al.  A digital image watermarking technique using prediction method and Weber ratio , 2004, IEEE International Symposium on Communications and Information Technology, 2004. ISCIT 2004..

[19]  Chiou-Shann Fuh,et al.  Fast Object Detection with Occlusions , 2004, ECCV.

[20]  Lonnie C. Ludeman,et al.  Fundamentals of Digital Signal Processing , 1986 .

[21]  Nanning Zheng,et al.  A deformable local image descriptor , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[23]  Yuan Li,et al.  High-Performance Rotation Invariant Multiview Face Detection , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[26]  Vittoria Bruni,et al.  A generalized model for scratch detection , 2004, IEEE Transactions on Image Processing.

[27]  Michael H. F. Wilkinson,et al.  Connected Shape-Size Pattern Spectra for Rotation and Scale-Invariant Classification of Gray-Scale Images , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Cordelia Schmid,et al.  A maximum entropy framework for part-based texture and object recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[29]  Patrick Sayd,et al.  Real-time human detection in urban scenes: Local descriptors and classifiers selection with AdaBoost-like algorithms , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[30]  Joyce Van de Vegte,et al.  Fundamentals of Digital Signal Processing , 2001 .

[31]  Christophe Garcia,et al.  Convolutional face finder: a neural architecture for fast and robust face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Pietro Perona,et al.  Evaluation of Features Detectors and Descriptors based on 3D Objects , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[33]  Rong Xiao,et al.  Dynamic Cascades for Face Detection , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[34]  A. Martínez,et al.  The AR face databasae , 1998 .

[35]  Matti Pietikäinen,et al.  A Bayesian Local Binary Pattern texture descriptor , 2008, 2008 19th International Conference on Pattern Recognition.

[36]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[37]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[38]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[39]  Erkki Oja,et al.  Texture discrimination with multidimensional distributions of signed gray-level differences , 2001, Pattern Recognit..

[40]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[41]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[44]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[45]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[47]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Patrick van der Smagt,et al.  Introduction to neural networks , 1995, The Lancet.

[49]  Jonathan Brandt,et al.  Robust object detection via soft cascade , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[50]  Jiri Matas,et al.  Improving Descriptors for Fast Tree Matching by Optimal Linear Projection , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[51]  Andrew Zisserman,et al.  Texture classification: are filter banks necessary? , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[52]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[54]  Matthew A. Brown,et al.  Learning Local Image Descriptors , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Matti Pietikäinen,et al.  A discriminative feature space for detecting and recognizing faces , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[56]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..