Optical Properties of Metal-dielectric-metal Microcavities in the Thz Frequency Range References and Links

We present an experimental and theoretical study of the optical properties of metal-dielectric-metal structures with patterned top metallic surfaces, in the THz frequency range. When the thickness of the dielectric slab is very small with respect to the wavelength, these structures are able to support strongly localized electromagnetic modes, concentrated in the subwavelength metal-metal regions. We provide a detailed analysis of the physical mechanisms which give rise to these photonic modes. Furthermore, our model quantitatively predicts the resonance positions and their coupling to free space photons. We demonstrate that these structures provide an efficient and controllable way to convert the energy of far field propagating waves into near field energy.

[1]  D. Hall,et al.  An introduction to optical waveguides , 1982, Proceedings of the IEEE.

[2]  J. R. Brown,et al.  Squeezing millimeter waves into microns. , 2004, Physical review letters.

[3]  Carlo Sirtori,et al.  Long-wavelength (? ? 8–11.5??µm) semiconductor lasers with waveguides based on surface plasmons , 1998 .

[4]  Reuven Gordon,et al.  Light in a subwavelength slit in a metal: Propagation and reflection , 2006 .

[5]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[6]  K. Oughstun,et al.  Electromagnetic theory of gratings , 1982, IEEE Journal of Quantum Electronics.

[7]  R. W. Wood,et al.  Anomalous Diffraction Gratings , 1935 .

[8]  Qing Hu,et al.  Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides. , 2007, Optics express.

[9]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[10]  Michael Sarrazin,et al.  Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes , 2003, physics/0311013.

[11]  David A. Ritchie,et al.  Quasi-periodic distributed feedback laser , 2010 .

[12]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[13]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[14]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[15]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[16]  Ross C. McPhedran,et al.  Highly conducting lamellar diffraction gratings , 1981 .

[17]  V. Shalaev Optical negative-index metamaterials , 2007 .

[18]  Ping Sheng,et al.  Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasmon calculations , 1982 .

[19]  W. A. Murray,et al.  Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure , 2006 .

[20]  Xu,et al.  Scattering-theory analysis of waveguide-resonator coupling , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  S. R. Andrews,et al.  Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces , 2008 .

[22]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[23]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[24]  Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[25]  P Lalanne,et al.  Theory of surface plasmon generation at nanoslit apertures. , 2005, Physical review letters.

[26]  Stefan A Maier,et al.  Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.

[27]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[28]  F. Pardo,et al.  Strong discontinuities in the complex photonic band structure of transmission metallic gratings , 2001 .

[29]  S. Schwerman,et al.  The Physics of Musical Instruments , 1991 .

[30]  William L. Barnes,et al.  REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .

[31]  R. Colombelli,et al.  Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions , 2009, Nature.

[32]  C. Sirtori,et al.  Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies. , 2009, Physical review letters.

[33]  A. Davies,et al.  Predictable surface emission patterns in terahertz photonic-crystal quantum cascade lasers. , 2009, Optics express.

[34]  Y. Todorov,et al.  Modal method for conical diffraction on a rectangular slit metallic grating in a multilayer structure. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[36]  M. J. Lockyear,et al.  Thin resonant structures for angle and polarization independent microwave absorption , 2009 .