A satisfaction function and distance measure based multi-criteria robot selection procedure

A multi-criteria decision-making model for a robot selection problem is presented in this article. The proposed model uses satisfaction function to convert various robot attributes into a unified scale. Further, a distance measure technique is used to ascertain the highest ranked candidate-robot. The proposed model is tested on the data from the open literature. An example case is presented and the results so obtained considering different attributes are compared with the results obtained earlier utilising the same data.

[1]  R. Venkata Rao,et al.  Selection, identification and comparison of industrial robots using digraph and matrix methods , 2006 .

[2]  Mao-Jiun J. Wang,et al.  A decision support system for robot selection , 1991, Decis. Support Syst..

[3]  B. K. Lambert,et al.  Development of a computer aided robot selection procedure (CARSP) , 1987 .

[4]  Rishi Kumar,et al.  Optimal selection of robots by using distance based approach method , 2010 .

[5]  Ajith Abraham,et al.  Neuro-Fuzzy Approximation of Multi-Criteria Decision-Making QFD Methodology , 2008 .

[6]  Steve Caplin,et al.  Principles Of Design , 2011 .

[7]  Hsu-Shih Shih,et al.  Incremental analysis for MCDM with an application to group TOPSIS , 2008, Eur. J. Oper. Res..

[8]  E. Ertugrul Karsak A TWO-PHASE ROBOT SELECTION PROCEDURE , 1998 .

[9]  Cengiz Kahraman,et al.  Fuzzy multi-criteria evaluation of industrial robotic systems , 2007, Comput. Ind. Eng..

[10]  David E. Booth,et al.  A Robust Multivariate Statistical Procedure for Evaluation and Selection of Industrial Robots , 1992 .

[11]  A. Bessaudou,et al.  Calculation of weights from equal satisfaction surfaces , 2008 .

[12]  S. K. Mukherjee,et al.  Integrating AHP with QFD for robot selection under requirement perspective , 2005 .

[13]  Marcello Braglia,et al.  Dimensional analysis for investment selection in industrial robots , 2000 .

[14]  T. Chu,et al.  A Fuzzy TOPSIS Method for Robot Selection , 2003 .

[15]  V. P. Agrawal,et al.  Computer aided robot selection: the ‘multiple attribute decision making’ approach , 1991 .

[16]  Li Chen,et al.  MULTIOBJECTIVE DESIGN OPTIMIZATION BASED ON SATISFACTION METRICS , 2001 .

[17]  K. Knott,et al.  A model for evaluating alternative robot systems under uncertainty , 1982 .

[18]  M. Dev Anand,et al.  Application of multicriteria decision making for selection of robotic system using fuzzy analytic hierarchy process , 2008 .

[19]  Liang-Hsuan Chen Designing robust products with multiple quality characteristics , 1997, Comput. Oper. Res..

[20]  Prasenjit Chatterjee,et al.  Selection of industrial robots using compromise ranking and outranking methods , 2010 .

[21]  Vikas Kapoor,et al.  Fuzzy Application to the Analytic Hierarchy Process for Robot Selection , 2005, Fuzzy Optim. Decis. Mak..

[22]  E. E. Karsak *,et al.  Practical common weight multi-criteria decision-making approach with an improved discriminating power for technology selection , 2005 .

[23]  Corrigendum: Novel method for decision making in the manufacturing environment , 2012 .

[24]  Moutaz Khouja,et al.  THE INDUSTRIAL ROBOTS SELECTION PROBLEM: LITERATURE REVIEW AND DIRECTIONS FOR FUTURE RESEARCH , 1994 .

[25]  Subir Kumar Saha,et al.  Attribute based specification, comparison and selection of a robot , 2004 .

[26]  E. Ertugrul Karsak,et al.  Robot selection using an integrated approach based on quality function deployment and fuzzy regression , 2008 .

[27]  Marcello Braglia,et al.  Evaluating and selecting investments in industrial robots , 1999 .

[28]  Moutaz Khouja,et al.  The use of data envelopment analysis for technology selection , 1995 .

[29]  Nourredine Boubekri,et al.  Development of an expert system for industrial robot selection , 1991 .

[30]  Celik Parkan,et al.  Decision-making and performance measurement models with applications to robot selection , 1999 .

[31]  M. J. Khouja AN OPTIONS VIEW OF ROBOT PERFORMANCE PARAMETERS IN A DYNAMIC ENVIRONMENT , 1999 .

[32]  Bartholomew O. Nnaji Evaluation methodology for performance and system economics for robotic devices , 1988 .

[33]  Robert J. Schlesinger,et al.  Decision Models for Robot Selection: A Comparison of Ordinary Least Squares and Linear Goal Programming Methods , 1989 .

[34]  Omar Ghrayeb,et al.  A PRACTICAL FRAMEWORK TO EVALUATE AND SELECT ROBOTS FOR ASSEMBLY OPERATIONS , 2004 .

[35]  Y. A. Tung,et al.  A revised weighted sum decision model for robot selection , 1996 .

[36]  Mao-Jiun J. Wang,et al.  A fuzzy multi-criteria decision-making approach for robot selection , 1993 .

[37]  Chon-Huat Goh,et al.  Analytic hierarchy process for robot selection , 1997 .

[38]  Jean-Marc Martel,et al.  Incorporating the Decision-maker's Preferences in the Goal-programming Model , 1990 .

[39]  Habib Chabchoub,et al.  Quality control system design through the goal programming model and the satisfaction functions , 2008, Eur. J. Oper. Res..

[40]  David E. Booth,et al.  A Decision Model for the Robot Selection Problem Using Robust Regression , 1991 .