Computing solenoidal eigenmodes of the vector Helmholtz equation: a novel approach

This paper presents a novel method for computing solenoidal eigenmodes and the corresponding eigenvalues of the vector Helmholtz equation. The method employs both vector and scalar finite-element basis functions to yield a discrete generalized eigenvalue problem that can be solved by standard iterative techniques. The technique is applicable for analysis of three-dimensional inhomogeneous resonant cavities.

[1]  Z. Cendes Vector finite elements for electromagnetic field computation , 1991 .

[2]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[3]  Z. J. Cendes,et al.  Solution of ferrite loaded waveguide using vector finite elements , 1995 .

[4]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[5]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[6]  D. White Numerical Modeling of Optical Gradient Traps Using the Vector Finite Element Method , 2000 .

[7]  B. Reddy,et al.  Introductory Functional Analysis: With Applications to Boundary Value Problems and Finite Elements , 1997 .

[8]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[9]  K. Bathe Finite Element Procedures , 1995 .

[10]  Z. Cendes,et al.  Spurious modes in finite-element methods , 1995 .

[11]  Alain Bossavit,et al.  Edge-elements for scattering problems , 1989 .

[12]  Jin-Fa Lee,et al.  Tangential vector finite elements for electromagnetic field computation , 1991 .

[13]  Jin-Fa Lee,et al.  Full-wave analysis of dielectric waveguides using tangential vector finite elements , 1991 .

[14]  Raj Mittra,et al.  Radar cross section computation of inhomogeneous scatterers using edge‐based finite element methods in frequency and time domains , 1993 .

[15]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[16]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[19]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[20]  Brian T. Smith,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[21]  P. P. Silvester,et al.  Covariant projection elements for 3D vector field problems , 1988 .

[22]  Jin-Fa Lee,et al.  Finite-element analysis of arbitrarily shaped cavity resonators using H/sup 1/(curl) elements , 1997 .

[23]  Raj Mittra,et al.  A note on the application of edge-elements for modeling three-dimensional inhomogeneously-filled cavities , 1992 .