CORE AND RESIDUAL INTERSECTIONS OF IDEALS

D. Rees and J. Sally defined the core of an R-ideal I as the in- tersection of all (minimal) reductions of I. However, it is not easy to give an explicit characterization of it in terms of data attached to the ideal. Until recently, the only case in which a closed formula was known is the one of inte- grally closed ideals in a two-dimensional regular local ring, due to C. Huneke and I. Swanson. The main result of this paper explicitly describes the core of a broad class of ideals with good residual properties in an arbitrary local Cohen-Macaulay ring. We also find sharp bounds on the number of minimal reductions that one needs to intersect to get the core.

[1]  B. Ulrich,et al.  The structure of the core of ideals , 2001, math/0210069.

[2]  D. Eisenbud,et al.  Hilbert Functions, Residual Intersections, and Residually S2 Ideals , 2001, Compositio Mathematica.

[3]  C. Huneke,et al.  Fiber cones and the integral closure of ideals , 2001 .

[4]  S. Goto,et al.  Good ideals in Gorenstein local rings , 2000 .

[5]  A. Corso,et al.  On residually S_2 ideals and projective dimension one modules , 2000, math/0210039.

[6]  Eero Hyry Coefficient ideals and the Cohen-Macaulay property of Rees algebras , 2000 .

[7]  B. Ulrich,et al.  Linkage and reduction numbers , 1998 .

[8]  A. Corso,et al.  Reduction number of links of irreducible varieties , 1997, math/0210071.

[9]  B. Ulrich Ideals having the expected reduction number , 1996 .

[10]  C. Huneke,et al.  A theorem of Briançon-Skoda type for regular local rings containing a field , 1996 .

[11]  Mark R. Johnson,et al.  Artin-Nagata properties and Cohen-Macaulay associated graded rings , 1996 .

[12]  B. Ulrich,et al.  GORENSTEIN ALGEBRAS, SYMMETRIC MATRICES, SELF-LINKED IDEALS, AND SYMBOLIC POWERS , 1995, alg-geom/9509005.

[13]  C. Huneke,et al.  Cores of ideals in $2$-dimensional regular local rings. , 1995 .

[14]  J. Lipman Adjoints of ideals in regular local rings , 1994, alg-geom/9405010.

[15]  D. Happel On Gorenstein Algebras , 1991 .

[16]  B. Ulrich,et al.  Self-linked curve singularities , 1990, Nagoya Mathematical Journal.

[17]  J. Sally,et al.  General elements and joint reductions. , 1988 .

[18]  W. Vasconcelos,et al.  Ideals with sliding depth , 1985, Nagoya Mathematical Journal.

[19]  C. Huneke LINKAGE AND THE KOSZUL HOMOLOGY OF IDEALS , 1982 .

[20]  B. Teissier,et al.  Pseudorational local rings and a theorem of Brian\c con-Skoda about integral closures of ideals. , 1981 .

[21]  J. Herzog,et al.  The Koszul algebra of a codimension 2 embedding , 1980 .

[22]  Giuseppe Valla,et al.  Form rings and regular sequences , 1978, Nagoya Mathematical Journal.

[23]  D. Buchsbaum,et al.  What annihilates a module , 1977 .

[24]  R. Cowsik,et al.  On the Fibres of Blowing Up , 1976 .

[25]  M. Artin,et al.  Residual intersections in Cohen-Macauley rings , 1972 .

[26]  D. Buchsbaum,et al.  Commutative Algebra, Vol. II. , 1959 .

[27]  D. G. Northcott,et al.  Reductions of ideals in local rings , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.