Thermal navigation in larval zebrafish

Navigation in complex environments requires selection of appropriate actions as a function of local cues. To gain a quantitative and mechanistic understanding of zebrafish thermal navigation, we have developed a novel assay that requires animals to rely exclusively on thermosensory information in the absence of other cues such as vision or mechanosensation. We show that zebrafish use both absolute and relative temperature information to restrict their locomotor trajectories to a preferred temperature range. We identify components of movement that are modulated solely by absolute temperature, as well as components that are modulated by both absolute and relative temperature. Specifically, we find that dwell time between movements and displacement per movement depend solely on absolute temperature, whereas turn magnitude and turn direction bias are modulated by absolute and relative temperature. To evaluate whether these sensorimotor relationships could explain thermal restriction in our navigation assay, we performed Monte Carlo simulations of locomotor trajectories based on all or subsets of these relationships. We find that thermosensory modulation of turn magnitude and turn direction bias constitute the core navigation strategy in larval zebrafish, while modulation of dwell time accelerates the execution of this strategy at noxious temperatures. Modulation of turn direction bias represents a novel strategy not found in invertebrate models, whereby animals correct unfavorable headings by preferentially turning in a preferred turn direction until they obtain a favorable heading. Modulating turn direction bias in response to recent sensory experience is an effective strategy for selecting favorable headings in organisms that do not have a dedicated sampling phase before each reorientation event.

[1]  Andrew M. Leifer,et al.  Monoaminergic Orchestration of Motor Programs in a Complex C. elegans Behavior , 2013, PLoS biology.

[2]  D. Raible,et al.  The Zebrafish Ortholog of TRPV1 Is Required for Heat-Induced Locomotion , 2013, The Journal of Neuroscience.

[3]  L. Kruglyak,et al.  Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans , 2012, BMC Biology.

[4]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[5]  Zengcai V. Guo,et al.  Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behavior , 2012, Nature.

[6]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[7]  Ned S Wingreen,et al.  Responding to chemical gradients: bacterial chemotaxis. , 2012, Current opinion in cell biology.

[8]  Shu Liu,et al.  Temperature- and Touch-Sensitive Neurons Couple CNG and TRPV Channel Activities to Control Heat Avoidance in Caenorhabditis elegans , 2012, PloS one.

[9]  Bryn E. Gaertner,et al.  Microfluidic Devices for Analysis of Spatial Orientation Behaviors in Semi-Restrained Caenorhabditis elegans , 2011, PloS one.

[10]  Marc Gershow,et al.  Two Alternating Motor Programs Drive Navigation in Drosophila Larva , 2011, PloS one.

[11]  I. Mori,et al.  Identification of the AFD neuron as the site of action of the CREB protein in Caenorhabditis elegans thermotaxis , 2011, EMBO reports.

[12]  I. Mori,et al.  Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans , 2011, The EMBO journal.

[13]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[14]  Aravinthan D. T. Samuel,et al.  Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. , 2010, Genes & development.

[15]  C. Montell,et al.  Fine Thermotactic Discrimination between the Optimal and Slightly Cooler Temperatures via a TRPV Channel in Chordotonal Neurons , 2010, The Journal of Neuroscience.

[16]  Paul J. B. Hart,et al.  Behavioural thermoregulation in two freshwater fish species. , 2010, Journal of fish biology.

[17]  Aristides B. Arrenberg,et al.  Optogenetic Localization and Genetic Perturbation of Saccade-Generating Neurons in Zebrafish , 2010, The Journal of Neuroscience.

[18]  Aravinthan D. T. Samuel,et al.  Navigational Decision Making in Drosophila Thermotaxis , 2010, The Journal of Neuroscience.

[19]  H. Burgess,et al.  Distinct Retinal Pathways Drive Spatial Orientation Behaviors in Zebrafish Navigation , 2010, Current Biology.

[20]  E. Kodama,et al.  Distinct thermal migration behaviors in response to different thermal gradients in Caenorhabditis elegans , 2010, Genes, brain, and behavior.

[21]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[22]  Herwig Baier,et al.  Genetic and optical targeting of neural circuits and behavior—zebrafish in the spotlight , 2009, Current Opinion in Neurobiology.

[23]  A. Mochizuki,et al.  Steepness of thermal gradient is essential to obtain a unified view of thermotaxis in C. elegans. , 2009, Journal of theoretical biology.

[24]  Kazushi Yoshida,et al.  Parallel Use of Two Behavioral Mechanisms for Chemotaxis in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[25]  Daniel Ramot,et al.  Thermotaxis is a Robust Mechanism for Thermoregulation in Caenorhabditis elegans Nematodes , 2008, The Journal of Neuroscience.

[26]  R. Shingai,et al.  Phase-dependent preference of thermosensation and chemosensation during simultaneous presentation assay in Caenorhabditis elegans , 2008, BMC Neuroscience.

[27]  Benjamin R. Myers,et al.  Zebrafish TRPA1 Channels Are Required for Chemosensation But Not for Thermosensation or Mechanosensory Hair Cell Function , 2008, The Journal of Neuroscience.

[28]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[29]  Aravinthan D. T. Samuel,et al.  An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior , 2008, Proceedings of the National Academy of Sciences.

[30]  Daniel Ramot,et al.  Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans , 2008, Nature Neuroscience.

[31]  Koutarou D. Kimura,et al.  Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of C. elegans , 2008, Science.

[32]  S. Higashijima,et al.  Zebrafish and motor control over the last decade , 2008, Brain Research Reviews.

[33]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[34]  Albert Libchaber,et al.  A concentration-dependent switch in the bacterial response to temperature , 2007, Nature Cell Biology.

[35]  Raymond B Huey,et al.  Thermal preference of Caenorhabditis elegans: a null model and empirical tests , 2007, Journal of Experimental Biology.

[36]  A. Patapoutian,et al.  From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs , 2007, Current Opinion in Neurobiology.

[37]  Damon A. Clark,et al.  Temporal Activity Patterns in Thermosensory Neurons of Freely Moving Caenorhabditis elegans Encode Spatial Thermal Gradients , 2007, The Journal of Neuroscience.

[38]  Greg J. Stephens,et al.  Dimensionality and Dynamics in the Behavior of C. elegans , 2007, PLoS Comput. Biol..

[39]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[40]  Damon A. Clark,et al.  Short-term adaptation and temporal processing in the cryophilic response of Caenorhabditis elegans. , 2007, Journal of neurophysiology.

[41]  Ellen A. Lumpkin,et al.  Mechanisms of sensory transduction in the skin , 2007, Nature.

[42]  D. Kleinfeld,et al.  Active Spatial Perception in the Vibrissa Scanning Sensorimotor System , 2007, PLoS biology.

[43]  R. Shingai,et al.  Evolution of thermoTRP ion channel homologs in vertebrates. , 2006, Physiological genomics.

[44]  Damon A. Clark,et al.  Sensorimotor control during isothermal tracking in Caenorhabditis elegans , 2006, Journal of Experimental Biology.

[45]  Damon A. Clark,et al.  A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans , 2006, Nature Neuroscience.

[46]  Damon A. Clark,et al.  The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[47]  I. Mori,et al.  Quantitative analysis of thermotaxis in the nematode Caenorhabditis elegans , 2006, Journal of Neuroscience Methods.

[48]  A. Patapoutian,et al.  Trp ion channels and temperature sensation. , 2006, Annual review of neuroscience.

[49]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[50]  A. Schier,et al.  Assembly of Trigeminal Sensory Ganglia by Chemokine Signaling , 2005, Neuron.

[51]  Koutarou D. Kimura,et al.  Diverse regulation of sensory signaling by C. elegans nPKC‐epsilon/eta TTX‐4 , 2005, The EMBO journal.

[52]  Aravinthan D. T. Samuel,et al.  Sensorimotor Integration: Locating Locomotion in Neural Circuits , 2005, Current Biology.

[53]  A. Moqrich,et al.  Impaired Thermosensation in Mice Lacking TRPV3, a Heat and Camphor Sensor in the Skin , 2005, Science.

[54]  Cori Bargmann,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A circuit for navigation in Caenorhabditis elegans , 2005 .

[55]  Koutarou D. Kimura,et al.  Genetic Control of Temperature Preference in the Nematode Caenorhabditis elegans , 2005, Genetics.

[56]  P. Garrity,et al.  The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. , 2005, Genes & development.

[57]  M. Caterina,et al.  Altered Thermal Selection Behavior in Mice Lacking Transient Receptor Potential Vanilloid 4 , 2005, The Journal of Neuroscience.

[58]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[59]  Koutarou D. Kimura,et al.  The C. elegans Thermosensory Neuron AFD Responds to Warming , 2004, Current Biology.

[60]  Y. Ohshima,et al.  Distribution and movement of Caenorhabditis elegans on a thermal gradient , 2003, Journal of Experimental Biology.

[61]  Hatim A. Zariwala,et al.  Step Response Analysis of Thermotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[62]  Lei Liu,et al.  Identification and function of thermosensory neurons in Drosophila larvae , 2003, Nature Neuroscience.

[63]  D. Raible,et al.  Neurogenin1 defines zebrafish cranial sensory ganglia precursors. , 2002, Developmental biology.

[64]  Aravinthan D. T. Samuel,et al.  Thermotaxis in Caenorhabditis elegans Analyzed by Measuring Responses to Defined Thermal Stimuli , 2002, The Journal of Neuroscience.

[65]  P. D. Henion,et al.  Differentiation and maturation of zebrafish dorsal root and sympathetic ganglion neurons , 2002, The Journal of comparative neurology.

[66]  J. Satterlee,et al.  Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx , 2001, Neuron.

[67]  A. Miyawaki,et al.  Circularly permuted green fluorescent proteins engineered to sense Ca2+ , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[68]  D. O'Malley,et al.  Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. , 2000, The Journal of experimental biology.

[69]  Yuji Kohara,et al.  The LIM Homeobox Gene ceh-14 Confers Thermosensory Function to the AFD Neurons in Caenorhabditis elegans , 2000, Neuron.

[70]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[71]  G. Ruvkun,et al.  Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene , 1997, Neuron.

[72]  Cori Bargmann,et al.  A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans , 1996, Neuron.

[73]  Ikue Mori,et al.  Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans , 1996, Neuron.

[74]  R. Refinetti Body temperature and behaviour of golden hamsters (Mesocricetus auratus) and ground squirrels (Spermophilus tridecemlineatus) in a thermal gradient , 1995, Journal of Comparative Physiology A.

[75]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[76]  M. Surette,et al.  Signal transduction in bacterial chemotaxis , 1992, The Journal of biological chemistry.

[77]  J. Y. Kuwada,et al.  Identification of spinal neurons in the embryonic and larval zebrafish , 1990, The Journal of comparative neurology.

[78]  J. Lamborghini,et al.  Disappearance of Rohon‐Beard neurons from the spinal cord of larval Xenopus laevis , 1987, The Journal of comparative neurology.

[79]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[80]  Y Imae,et al.  Conditional inversion of the thermoresponse in Escherichia coli , 1984, Journal of bacteriology.

[81]  K. L. Poff,et al.  Mutants of thermotaxis in Dictyostelium discoideum. , 1982, Experimental cell research.

[82]  I. Johanson,et al.  Thermotaxis in neonatal rat pups , 1979, Physiology & Behavior.

[83]  R. L. Russell,et al.  Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[84]  C. Leonard Thermotaxis in golden hamster pups. , 1974, Journal of comparative and physiological psychology.

[85]  J. Weis Analysis of the development of nervous system of the zebrafish, Brachydanio rerio. I. The normal morphology and development of the spinal cord and ganglia of the zebrafish. , 1968, Journal of embryology and experimental morphology.

[86]  F. South,et al.  Temperature preference in golden hamsters. , 1967, Animal behaviour.

[87]  W. Ryu,et al.  FIGURES FOR : TEMPERATURE-DEPENDENT BEHAVIOURS ARE GENETICALLY VARIABLE IN THE NEMATODE CAENORABDITIS BRIGGSAE , 2013 .

[88]  Jeremy Terrien,et al.  Behavioral thermoregulation in mammals: a review. , 2011, Frontiers in bioscience.

[89]  Melina E. Hale,et al.  Alternative startle motor patterns and behaviors in the larval zebrafish (Danio rerio) , 2011, Journal of Comparative Physiology A.

[90]  BMC Neuroscience BioMed Central , 2005 .

[91]  I. Mori Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. , 1999, Annual review of genetics.

[92]  Y Imae,et al.  Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by L-serine. , 1979, Proceedings of the National Academy of Sciences of the United States of America.