Amorphous Silicoboron Carbonitride Ceramic with Very High Viscosity at Temperatures above 1500°C
暂无分享,去创建一个
R. Raj | R. Riedel | L. An | Lutz M. Ruswisch
[1] M. Jansen,et al. Moderne Hochleistungskeramiken – amorphe anorganische Netzwerke aus molekularen Vorläufern , 1997 .
[2] P. Pockley. Australian investors lose tax incentives on innovation , 1996, Nature.
[3] F. Aldinger,et al. A silicoboron carbonitride ceramic stable to 2,000°C , 1996, Nature.
[4] G. G. Long,et al. Cavitation Contributes Substantially to Tensile Creep in Silicon Nitride , 1995 .
[5] H. Kleebe,et al. A covalent micro/nano-composite resistant to high-temperature oxidation , 1995, Nature.
[6] R. Raj. Fundamental Research in Structural Ceramics for Service Near 2000°C , 1993 .
[7] R. Brook,et al. Synthesis of dense silicon-based ceramics at low temperatures , 1992, Nature.
[8] R. Raj,et al. Shear and Densification of Glass Powder Compacts , 1989 .
[9] Robert F. Davis,et al. Kinetics and Mechanisms of High-Temperature Creep in Silicon Carbide. II. Chemically Vapor Deposited, , 1984 .
[10] C. Carter,et al. Kinetics and Mechanisms of High‐Temperature Creep in Silicon Carbide: I, Reaction‐Bonded , 1984 .
[11] B. I. Davis,et al. Compressive creep of Si3N4/MgO alloys , 1982 .
[12] R. Raj,et al. Activation Energies for Densification, Creep, and Grain‐Boundary Sliding in Nitrogen Ceramics , 1981 .
[13] B. I. Davis,et al. Compressive creep of Si3N4/MgO alloys , 1980 .
[14] J. Mackenzie,et al. The Elastic Constants of a Solid containing Spherical Holes , 1950 .