Latent binary MRF for online reconstruction of large scale systems

[1]  Yufei Han,et al.  GMRF Estimation under Topological and Spectral Constraints , 2014, ECML/PKDD.

[2]  Cyril Furtlehner,et al.  Approximate inverse Ising models close to a Bethe reference point , 2013 .

[3]  V. Martín Modélisation probabiliste et inférence par l'algorithme Belief Propagation , 2013 .

[4]  Yufei Han,et al.  Pairwise MRF Calibration by Perturbation of the Bethe Reference Point , 2012, ArXiv.

[5]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[6]  R. Monasson,et al.  Adaptive Cluster Expansion for the Inverse Ising Problem: Convergence, Algorithm and Tests , 2011, 1110.5416.

[7]  Wanli Min,et al.  Real-time road traffic prediction with spatio-temporal correlations , 2011 .

[8]  Ali Jalali,et al.  On Learning Discrete Graphical Models using Greedy Methods , 2011, NIPS.

[9]  Fabien Moutarde,et al.  Spatial and temporal analysis of traffic states on large scale networks , 2010, 13th International IEEE Conference on Intelligent Transportation Systems.

[10]  J. Lafferty,et al.  High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.

[11]  Anne Auger,et al.  Learning Multiple Belief Propagation Fixed Points for Real Time Inference , 2009, Physica A: Statistical Mechanics and its Applications.

[12]  Kazuyuki Tanaka,et al.  Approximate Learning Algorithm in Boltzmann Machines , 2009, Neural Computation.

[13]  Alexandre M. Bayen,et al.  Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment , 2009 .

[14]  Thierry Mora,et al.  Constraint satisfaction problems and neural networks: A statistical physics perspective , 2008, Journal of Physiology-Paris.

[15]  Danny Bickson,et al.  Gaussian Belief Propagation: Theory and Aplication , 2008, 0811.2518.

[16]  Paul H. Siegel,et al.  Gaussian belief propagation based multiuser detection , 2008, 2008 IEEE International Symposium on Information Theory.

[17]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[18]  Arnaud de La Fortelle,et al.  A Belief Propagation Approach to Traffic Prediction using Probe Vehicles , 2007, 2007 IEEE Intelligent Transportation Systems Conference.

[19]  Hilbert J. Kappen,et al.  Sufficient Conditions for Convergence of the Sum–Product Algorithm , 2005, IEEE Transactions on Information Theory.

[20]  Martin J. Wainwright,et al.  Estimating the "Wrong" Graphical Model: Benefits in the Computation-Limited Setting , 2006, J. Mach. Learn. Res..

[21]  Tony X. Han,et al.  Efficient Nonparametric Belief Propagation with Application to Articulated Body Tracking , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[22]  John W. Fisher,et al.  Loopy Belief Propagation: Convergence and Effects of Message Errors , 2005, J. Mach. Learn. Res..

[23]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[24]  Freda Kemp,et al.  An Introduction to Sequential Monte Carlo Methods , 2003 .

[25]  Adnan Darwiche,et al.  On the Revision of Probabilistic Beliefs using Uncertain Evidence , 2003, IJCAI.

[26]  William T. Freeman,et al.  Nonparametric belief propagation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[27]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[28]  Yee Whye Teh,et al.  Approximate inference in Boltzmann machines , 2003, Artif. Intell..

[29]  Billy M. Williams,et al.  Comparison of parametric and nonparametric models for traffic flow forecasting , 2002 .

[30]  Sekhar Tatikonda,et al.  Loopy Belief Propogation and Gibbs Measures , 2002, UAI.

[31]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[32]  Xavier Boyen Inference and learning in complex stochastic processes , 2002 .

[33]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[34]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[35]  Yw Teh,et al.  Passing and Bouncing Messages for Generalised Inference , 2001 .

[36]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[37]  D. Mackay A conversation about the Bethe free energy and sum-product , 2001 .

[38]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[39]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[40]  大西 仁,et al.  Pearl, J. (1988, second printing 1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan-Kaufmann. , 1994 .

[41]  E. T. Jaynes,et al.  Probability Theory as Logic , 1990 .

[42]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[43]  Judea Pearl,et al.  Chapter 2 – BAYESIAN INFERENCE , 1988 .

[44]  M. Mézard,et al.  Spin Glass Theory And Beyond: An Introduction To The Replica Method And Its Applications , 1986 .

[45]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[46]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[47]  J. Darroch,et al.  Generalized Iterative Scaling for Log-Linear Models , 1972 .

[48]  Edwin T. Jaynes,et al.  Prior Probabilities , 1968, Encyclopedia of Machine Learning.

[49]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.