Distinguished material surfaces and coherent structures in three-dimensional fluid flows

[1]  G. Haller,et al.  Lagrangian coherent structures and mixing in two-dimensional turbulence , 2000 .

[2]  Stephen Wiggins,et al.  Intergyre transport in a wind-driven, quasigeostrophic double gyre: An application of lobe dynamics , 2000 .

[3]  M. Giona,et al.  Invariant geometric properties of a class of 3D chaotic flows , 2000 .

[4]  G. Haller Finding finite-time invariant manifolds in two-dimensional velocity fields. , 2000, Chaos.

[5]  K. Fraedrich,et al.  Transient chaotic mixing during a baroclinic life cycle. , 2000, Chaos.

[6]  Christopher K. R. T. Jones,et al.  Lagrangian Motion and Fluid Exchange in a Barotropic Meandering Jet , 1999 .

[7]  George Haller,et al.  The geometry and statistics of mixing in aperiodic flows , 1999 .

[8]  George Haller,et al.  Geometry of Cross-Stream Mixing in a Double-Gyre Ocean Model , 1999 .

[9]  Patrick Patrick Anderson,et al.  Analysis of mixing in three-dimensional time-periodic cavity flows , 1999, Journal of Fluid Mechanics.

[10]  A. Neishtadt,et al.  Change of the adiabatic invariant at a separatrix in a volume-preserving 3D system , 1999 .

[11]  K. Bowman Manifold geometry and mixing in observed atmospheric flows , 1999 .

[12]  Antonello Provenzale,et al.  TRANSPORT BY COHERENT BAROTROPIC VORTICES , 1999 .

[13]  Keiko K. Nomura,et al.  The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence , 1998, Journal of Fluid Mechanics.

[14]  George Haller,et al.  Finite time transport in aperiodic flows , 1998 .

[15]  Ottino,et al.  Visualization of three-dimensional chaos , 1998, Science.

[16]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[17]  Christopher K. R. T. Jones,et al.  Quantifying transport in numerically generated velocity fields , 1997 .

[18]  Yingshuo Shen,et al.  Characterization of Three-Dimensional Lagrangian Circulation Associated with Tidal Rectification over a Submarine Bank , 1997 .

[19]  W. Dahm,et al.  Experimental assessment of fractal scale similarity in turbulent flows. Part 2. Higher-dimensional intersections and non-fractal inclusions , 1997, Journal of Fluid Mechanics.

[20]  Robert S. MacKay,et al.  Transport in 3D volume-preserving flows , 1994 .

[21]  S. Wiggins,et al.  On the integrability and perturbation of three-dimensional fluid flows with symmetry , 1994 .

[22]  Brian J. Cantwell,et al.  Exact solution of a restricted Euler equation for the velocity gradient tensor , 1992 .

[23]  Michael Tabor,et al.  The kinematics of stretching and alignment of material elements in general flow fields , 1992, Journal of Fluid Mechanics.

[24]  S. Strogatz,et al.  Chaotic streamlines inside drops immersed in steady Stokes flows , 1991, Journal of Fluid Mechanics.

[25]  S. Friedlander,et al.  Instability criteria for the flow of an inviscid incompressible fluid. , 1991, Physical review letters.

[26]  J. Weiss The dynamics of entropy transfer in two-dimensional hydrodynamics , 1991 .

[27]  A. Lifschitz Essential spectrum and local stability condition in hydrodynamics , 1991 .

[28]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[29]  H. K. Moffatt,et al.  On a class of steady confined Stokes flows with chaotic streamlines , 1990, Journal of Fluid Mechanics.

[30]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[31]  Chong-Qing Cheng,et al.  Existence of invariant tori in three-dimensional measure-preserving mappings , 1989 .

[32]  Splitting of the Separatrices and the Nonexistence of First Integrals in Systems of Differential Equations of Hamiltonian Type with Two Degrees of Freedom , 1988 .

[33]  O. Piro,et al.  Passive scalars, three-dimensional volume-preserving maps, and chaos , 1988 .

[34]  Uriel Frisch,et al.  Chaotic streamlines in the ABC flows , 1986, Journal of Fluid Mechanics.

[35]  J. Finn,et al.  Dynamics of a three-dimensional incompressible flow with stagnation points , 1982 .

[36]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.