Fuzzy modeling system based on hybrid evolutionary approach

In this paper, we introduce a new evolutionary methodology to design fuzzy inference systems. An innovative hybrid stages of learning method and tuning method, contains Subtractive clustering, Adaptive Neuro-Fuzzy Inference System (ANFIS) and particle swarm optimization (PSO), is developed to generate evolutional fuzzy modeling systems with high accuracy. For the purpose of illustration and validation of the approach, some data sets have been exploited. Empirical results illustrate that the proposed method is efficient.

[1]  Frank Hoffmann,et al.  Evolutionary algorithms for fuzzy control system design , 2001, Proc. IEEE.

[2]  Jyh-Shing Roger Jang,et al.  Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm , 1991, AAAI.

[3]  B. Samanta,et al.  Prediction of chaotic time series using computational intelligence , 2011, Expert Syst. Appl..

[4]  Adel M. Alimi,et al.  A hybrid learning algorithm for evolving Flexible Beta Basis Function Neural Tree Model , 2013, Neurocomputing.

[5]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[6]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[7]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[8]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[9]  Keon-Jun Park,et al.  Evolutionary Design of Fuzzy Inference Systems by Means of Fuzzy Partition of Input Space , 2013 .

[10]  J. Yen,et al.  Fuzzy Logic: Intelligence, Control, and Information , 1998 .

[11]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[12]  Jesús Alcalá-Fdez,et al.  Improving fuzzy logic controllers obtained by experts: a case study in HVAC systems , 2009, Applied Intelligence.

[13]  Francisco Herrera,et al.  A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems , 2012, Applied Intelligence.

[14]  Daniel F. Leite,et al.  Fuzzy granular evolving modeling for time series prediction , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[15]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[16]  Bo Yang,et al.  Automatic Design of Hierarchical Takagi–Sugeno Type Fuzzy Systems Using Evolutionary Algorithms , 2007, IEEE Transactions on Fuzzy Systems.

[17]  Adel M. Alimi,et al.  Hybrid harmony search algorithm for global optimization , 2013, 2013 World Congress on Nature and Biologically Inspired Computing.

[18]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[19]  Christian Setzkorn,et al.  On the use of multi-objective evolutionary algorithms for the induction of fuzzy classification rule systems. , 2005, Bio Systems.

[20]  Amit Konar,et al.  Computational Intelligence: Principles, Techniques and Applications , 2005 .

[21]  Hisao Ishibuchi,et al.  Incorporation of user preference into multi-objective genetic fuzzy rule selection for pattern classification problems , 2009, Artificial Life and Robotics.

[22]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[23]  Chang-Hyun Kim,et al.  Building a Fuzzy Model with Transparent Membership Functions through Constrained Evolutionary Optimization , 2004 .

[24]  Francisco Herrera,et al.  Multiobjective genetic fuzzy rule selection of single granularity-based fuzzy classification rules and its interaction with the lateral tuning of membership functions , 2011, Soft Comput..

[25]  Reda Alhajj,et al.  Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining , 2008, Journal of Intelligent Information Systems.

[26]  Adel M. Alimi,et al.  Evolving Flexible Beta Operator Neural Trees (FBONT) for Time Series Forecasting , 2012, ICONIP.

[27]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[28]  Hannu Koivisto,et al.  A Dynamically Constrained Multiobjective Genetic Fuzzy System for Regression Problems , 2010, IEEE Transactions on Fuzzy Systems.

[29]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[30]  Francisco J. Martínez-López,et al.  Mining uncertain data with multiobjective genetic fuzzy systems to be applied in consumer behaviour modelling , 2009, Expert Syst. Appl..

[31]  Francisco Herrera,et al.  A Fast and Scalable Multiobjective Genetic Fuzzy System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems , 2011, IEEE Transactions on Fuzzy Systems.

[32]  Donald E. Waagen,et al.  Evolving recurrent perceptrons for time-series modeling , 1994, IEEE Trans. Neural Networks.

[33]  Adel M. Alimi,et al.  The Adaptive Chemotactic Foraging with Differential Evolution algorithm , 2013, 2013 World Congress on Nature and Biologically Inspired Computing.

[34]  A. Izenman J. R. Wolf and the zürich sunspot relative numbers , 1985 .

[35]  Amir Hussain A new neural network structure for temporal signal processing , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[36]  Beatrice Lazzerini,et al.  Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets , 2010, Soft Comput..

[37]  Magne Setnes,et al.  GA-fuzzy modeling and classification: complexity and performance , 2000, IEEE Trans. Fuzzy Syst..

[38]  Adel M. Alimi,et al.  A hybrid computational chemotaxis in bacterial foraging optimization algorithm for global numerical optimization , 2013, 2013 IEEE International Conference on Cybernetics (CYBCO).