Advances in Photodiodes

[1]  R. Hoogeveen,et al.  Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere , 2001 .

[2]  H. Kakibayashi,et al.  Electrical and structural properties of dislocations confined in a InGaAs/GaAs heterostructure , 1993 .

[3]  Eugene A. Fitzgerald,et al.  Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation , 2007 .

[4]  J. X. Wang,et al.  Molecular beam epitaxial growth, characterization and performance of high-detectivity GaInAsSb/GaSb PIN detectors operating at 2.0 to 2.6 μm , 1995 .

[5]  A. Moseley,et al.  High-efficiency, low-leakage MOCVD-grown GaInAs/AlInAs heterojunction photodiodes for detection to 2.4μm , 1986 .

[6]  Wang Kechao,et al.  WAVELENGTH EXTENDED InGaAs/InP PHOTODETECTOR STRUCTURES WITH LATTICE MISMATCH UP TO 2.6% , 2010 .

[7]  Zhaobing Tian,et al.  Performance of gas source MBE-grown wavelength-extended InGaAs photodetectors with different buffer structures , 2009 .

[8]  Ping,et al.  LPE Growth of InAsPSb on InAs:Melt Composition,Lattice Mismatch and Surface Morphology , 1990 .

[9]  Ewa Papis-Polakowska,et al.  Design and fabrication of GaSb/InGaAsSb/AlGaAsSb mid-IR photodetectors , 2001, International Conference on Solid State Crystals.

[10]  Cheng Li,et al.  Distinction investigation of InGaAs photodetectors cutoff at 2.9 μm , 2010 .

[11]  H. Luo,et al.  Characterization of metamorphic InxAl1−xAs∕GaAs buffer layers using reciprocal space mapping , 2007 .

[12]  M. A. Afrailov Photoelectrical characteristics of the InAsSbP based uncooled photodiodes for the spectral range 1.6–3.5 μm , 2010 .

[13]  Tamer F. Refaat,et al.  Analysis of leakage currents in MOCVD grown GaInAsSb based photodetectors operating at 2 µm , 2006 .

[14]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[15]  J. Nijenhuis,et al.  High-spatial-resolution photoluminescence studies on misfit dislocations in lattice-mismatched III-V heterostructures , 1992 .

[16]  Morio Wada,et al.  Wide wavelength and low dark current lattice‐mismatched InGaAs/InAsP photodiodes grown by metalorganic vapor‐phase epitaxy , 1994 .

[17]  Tao Liu,et al.  Fabrication of short wavelength infrared InGaAs/InP photovoltaic detector series , 2006 .

[18]  Yonggang Zhang,et al.  IMPROVING THE PERFORMANCE OF EXTENDED WAVELENGTH InGaAs PHOTODETECTORS BY USING DIGITAL GRADED HETEROINTERFACES SUPERLATTICE: IMPROVING THE PERFORMANCE OF EXTENDED WAVELENGTH InGaAs PHOTODETECTORS BY USING DIGITAL GRADED HETEROINTERFACES SUPERLATTICE , 2010 .

[19]  Gas sensor using a robust approach under time multiplexing scheme with a twin laser chip for absorption and reference , 2008 .

[20]  Ray-Ming Lin,et al.  Material properties of compositional graded InxGa1−xAs and InxAl1−xAs epilayers grown on GaAs substrates , 1996 .

[21]  Jerry Tersoff,et al.  Dislocations and strain relief in compositionally graded layers , 1993 .

[22]  Z. Tian,et al.  Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination , 2009 .

[23]  P. Fewster X-ray diffraction from low-dimensional structures , 1993 .

[24]  Analysis, Optimization, and Design of 2–2.8 $\mu \hbox{m}$ Stacked Multiple-Junction PIN GaInAsSb/GaSb Photodetectors for Future O/E Interconnections , 2010, IEEE Transactions on Electron Devices.

[25]  Chris Van Hoof,et al.  Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side-illuminated short-wave infrared detectors , 2003 .