Bias-free reconfigurable magnonic phase shifter based on a spin-current controlled ferromagnetic resonator

Controllable phase modulation plays a pivotal role in the researches of magnonic logic gates. Here we propose a reconfigurable spin-current controlled magnonic phase shifter based on a ferromagnetic resonator. The proposed phase shifter requires no magnetic bias field during operation. The device is directly configured over the waveguide while keeping the original structure of the waveguide unaffected. Numerical micromagnetic simulations show that the phase shifter could yield either a {\pi}-phase or no shift depending on the magnetization status of the resonator, which can be controlled by a current pulse. Moreover, the phase-shifting operation could be affected by spin current. At different input current density, the device could be either used as a dynamic controlled phase shifter or a spin-wave valve. Finally, a XNOR magnonic logic gate is demonstrated using the proposed phase shifter. Our work can be a beneficial step to enhance the functionality and compatibility of the magnonic logic circuits.

[1]  J. E. Brewer,et al.  Extending the road beyond CMOS , 2002 .

[2]  R. Hertel,et al.  Domain-wall induced phase shifts in spin waves. , 2004, Physical review letters.

[3]  Kang L. Wang,et al.  Nano-scale computational architectures with spin wave bus , 2005 .

[4]  B. Hillebrands,et al.  Phase shift of spin waves traveling through a 180/spl deg/ Bloch-domain wall , 2005, IEEE Transactions on Magnetics.

[5]  M. Kostylev,et al.  Spin-wave logical gates , 2005 .

[6]  Arvind Kumar,et al.  Silicon CMOS devices beyond scaling , 2006, IBM J. Res. Dev..

[7]  Sang-Koog Kim,et al.  Conceptual design of spin wave logic gates based on a Mach–Zehnder-type spin wave interferometer for universal logic functions , 2008 .

[8]  M. Kostylev,et al.  Realization of spin-wave logic gates , 2007, 0711.4720.

[9]  S. Demokritov,et al.  Dual-function phase shifter for spin-wave logic applications , 2009 .

[10]  Wolfgang Porod,et al.  Device and Architecture Outlook for Beyond CMOS Switches , 2010, Proceedings of the IEEE.

[11]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[12]  Israel Koren,et al.  Towards logic functions as the device , 2010, 2010 IEEE/ACM International Symposium on Nanoscale Architectures.

[13]  H. Ulrichs,et al.  The building blocks of magnonics , 2011, 1101.0479.

[14]  Kang L. Wang,et al.  Non-volatile magnonic logic circuits engineering , 2010, 1012.4768.

[15]  G. Vignale,et al.  Electric control of spin currents and spin-wave logic. , 2011, Physical review letters.

[16]  V. Kruglyak,et al.  Nanoscale spin wave valve and phase shifter , 2012 .

[17]  D. Grundler,et al.  Enhanced functionality in magnonics by domain walls and inhomogeneous spin configurations , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  V. Kruglyak,et al.  Resonant microwave-to-spin-wave transducer , 2012 .

[19]  K. Navi,et al.  Implementation of reversible logic design in nanoelectronics on basis of majority gates , 2012, The 16th CSI International Symposium on Computer Architecture and Digital Systems (CADS 2012).

[20]  A. Khitun Multi-frequency magnonic logic circuits for parallel data processing , 2011, 1105.4671.

[21]  E. Lähderanta,et al.  Nonlinear phase shifters based on forward volume spin waves , 2013 .

[22]  F. J. Rodríguez-Fortuño,et al.  Near-Field Interference for the Unidirectional Excitation of Electromagnetic Guided Modes , 2013, Science.

[23]  Dmitri E. Nikonov,et al.  Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking , 2013, Proceedings of the IEEE.

[24]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[25]  H. Tang,et al.  Electric-field coupling to spin waves in a centrosymmetric ferrite. , 2014, Physical review letters.

[26]  B. Leven,et al.  Design of a spin-wave majority gate employing mode selection , 2014, 1408.3235.

[27]  S. Auffret,et al.  Ultrafast magnetization switching by spin-orbit torques , 2013, 1310.5586.

[28]  I. Krivorotov,et al.  Nanowire spin torque oscillator driven by spin orbit torques , 2014, Nature Communications.

[29]  C. S. Tsai,et al.  Magnonic crystals-based tunable microwave phase shifters , 2014 .

[30]  V. Cros,et al.  Spin-torque building blocks. , 2014, Nature Materials.

[31]  F. Bai,et al.  Dynamic control of spin wave spectra using spin-polarized currents , 2014, 1409.2421.

[32]  Ian Young IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Launches , 2015 .

[33]  Zhaohao Wang,et al.  Spintronics , 2015, ACM J. Emerg. Technol. Comput. Syst..

[34]  Dmitri E. Nikonov,et al.  Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[35]  H. Ohno,et al.  Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO , 2015 .

[36]  Huaiwu Zhang,et al.  Control phase shift of spin-wave by spin-polarized current and its application in logic gates , 2015 .

[37]  Kaushik Roy,et al.  Spin-Transfer Torque Devices for Logic and Memory: Prospects and Perspectives , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[38]  Christoph Adelmann,et al.  Experimental prototype of a spin-wave majority gate , 2016, ArXiv.

[39]  Xinyi Chen,et al.  A Physical Model for Predicting Off-Track Capability in Perpendicular Recording , 2016, IEEE Transactions on Magnetics.

[40]  Rudy Lauwereins,et al.  Non-volatile spin wave majority gate at the nanoscale , 2016, ArXiv.

[41]  A. Slavin,et al.  Bias-free spin-wave phase shifter for magnonic logic , 2016, 1604.07337.

[42]  Azad Naeemi,et al.  Non-Boolean Computing Benchmarking for Beyond-CMOS Devices Based on Cellular Neural Network , 2016, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[43]  A Methodology to Design Spin-Wave-Based Logic Gates in a Single Ferromagnetic Nanostripe Using Spin-Transfer Torque Effects , 2016, IEEE Transactions on Magnetics.

[44]  C. Marrows,et al.  The 2017 Magnetism Roadmap , 2017 .

[45]  J. Gope,et al.  Reversible Logic Gates Based on Single Spin Logic , 2017 .

[46]  Thomas N. Theis,et al.  The End of Moore's Law: A New Beginning for Information Technology , 2017, Computing in Science & Engineering.

[47]  J. Berakdar,et al.  Electric field controlled spin waveguide phase shifter in YIG , 2018, Journal of Applied Physics.

[48]  Sho Watanabe,et al.  Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal , 2018 .

[49]  Y. Otani,et al.  Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices , 2018 .

[50]  A. Khitun,et al.  Reversible magnetic logic gates based on spin wave interference , 2018 .

[51]  J. Shaw,et al.  $\text{Co}_{25}\text{Fe}_{75}$ Thin Films with Ultralow Total Damping , 2018, 1804.08786.

[52]  D. Grundler,et al.  Magnonics , 2010 .

[53]  Y. Blanter,et al.  Chiral excitation of spin waves in ferromagnetic films by magnetic nanowire gratings , 2019, Physical Review B.

[54]  A. Chumak Fundamentals of magnon-based computing , 2019, 1901.08934.

[55]  O. Hellwig,et al.  Reconfigurable Spin-Wave Nonreciprocity Induced by Dipolar Interaction in a Coupled Ferromagnetic Bilayer , 2019, Physical Review Applied.

[56]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[57]  Jianping Wang,et al.  Spin-orbit Torque and Spin Hall Effect-based Cellular Level Therapeutic Neuromodulators: Modulating Neuron Activities through Spintronic Nanodevices , 2019, 1903.02726.

[58]  A. Chumak Magnon Spintronics , 2019, Spintronics Handbook: Spin Transport and Magnetism, Second Edition.

[59]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[60]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[61]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[62]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.