Full Parameterization Study of a High-Energy and High-Power Li-Ion Cell for Physicochemical Models

For physicochemical modelling of lithium ion batteries, an extensive parametrization is necessary. These parameters need to be derived cell specifically as they vary with cell design. In this study, two cells from the same manufacturer are investigated which are optimized for high power and high energy applications. After opening the cells under argon atmosphere, the battery materials are extracted to conduct various chemical and physical measurements to define the active material type, microstructure, conductivity and mass loading of the electrodes. Furthermore, laboratory cells were built from the extracted materials to evaluate tortuosity and exchange current density by electrochemical impedance spectroscopy, open circuit voltages and solid diffusion coefficient by galvanostatic intermittent titration technique (GITT). The differences and similarities of these parameters for both cell types are discussed and compared to literature. Main differences are the electrode area, thickness, porosity, and thus, mass loading and areal capacity of the electrodes. Both cells have a NCA cathode, but only the high energy cell has a blend anode consisting of graphite and Si/SiOx whereas the anode active material of the high power cell is only made of graphite. The derived parameters are finally used for the parameterization of a P2D model.

[1]  A. Latz,et al.  Simulation-Based and Data-Driven Techniques for Quantifying the Influence of the Carbon Binder Domain on Electrochemical Properties of Li-Ion Batteries , 2022, Energies.

[2]  G. Offer,et al.  A composite electrode model for lithium-ion batteries with silicon/graphite negative electrodes , 2022, Journal of Power Sources.

[3]  K. Friedrich,et al.  Understanding the Influence of Temperature on Phase Evolution during Lithium‐Graphite (De‐)Intercalation Processes: An Operando X‐ray Diffraction Study , 2021, ChemElectroChem.

[4]  G. Richardson,et al.  Parametrisation and Use of a Predictive DFN Model for a High-Energy NCA/Gr-SiOx Battery , 2021, Journal of The Electrochemical Society.

[5]  W. Kays,et al.  From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. , 2021, Chemical reviews.

[6]  D. Howey,et al.  Parameterising continuum level Li-ion battery models&the LiionDB database , 2021, 2110.09879.

[7]  C. Heubner,et al.  Understanding Component‐Specific Contributions and Internal Dynamics in Silicon/Graphite Blended Electrodes for High‐Energy Li‐ion Batteries , 2021, Batteries & Supercaps.

[8]  A. Jossen,et al.  Change in the half-cell open-circuit potential curves of silicon–graphite and nickel-rich lithium nickel manganese cobalt oxide during cycle aging , 2021 .

[9]  B. Dunn,et al.  Electrochemical Modeling of GITT Measurements for Improved Solid-State Diffusion Coefficient Evaluation , 2021, ACS Applied Energy Materials.

[10]  Pei Lay Yap,et al.  Thermogravimetric Analysis (TGA) of Graphene Materials: Effect of Particle Size of Graphene, Graphene Oxide and Graphite on Thermal Parameters , 2021, C.

[11]  Florian J. Günter,et al.  Comparative Evaluation of LMR-NCM and NCA Cathode Active Materials in Multilayer Lithium-Ion Pouch Cells: Part I. Production, Electrode Characterization, and Formation , 2021 .

[12]  Xianhua Hou,et al.  Considering Critical Factors of Silicon/Graphite Anode Materials for Practical High-Energy Lithium-Ion Battery Applications , 2020, Energy & Fuels.

[13]  Simon V. Erhard,et al.  Impact of Electrode and Cell Design on Fast Charging Capabilities of Cylindrical Lithium-Ion Batteries , 2020 .

[14]  C. Delacourt,et al.  The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead , 2020, npj Computational Materials.

[15]  Marcus Jahn,et al.  Ante-mortem analysis, electrical, thermal, and ageing testing of state-of-the-art cylindrical lithium-ion cells , 2020, Elektrotech. Informationstechnik.

[16]  C. Heubner,et al.  GITT Analysis of Lithium Insertion Cathodes for Determining the Lithium Diffusion Coefficient at Low Temperature: Challenges and Pitfalls , 2020 .

[17]  W. D. Widanage,et al.  Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models , 2020, Journal of The Electrochemical Society.

[18]  E. Kendrick,et al.  Design Strategies for High Power vs. High Energy Lithium Ion Cells , 2019, Batteries.

[19]  M. Whittingham,et al.  What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries? , 2019, ACS Energy Letters.

[20]  D. Abraham,et al.  Operando Quantification of (De)Lithiation Behavior of Silicon–Graphite Blended Electrodes for Lithium‐Ion Batteries , 2019, Advanced Energy Materials.

[21]  Dirk Uwe Sauer,et al.  Full Cell Parameterization of a High-Power Lithium-Ion Battery for a Physico-Chemical Model: Part I. Physical and Electrochemical Parameters , 2018 .

[22]  Kai Peter Birke,et al.  Quantitative validation of calendar aging models for lithium-ion batteries , 2018, Journal of Power Sources.

[23]  A. Latz,et al.  Direct Determination of Diffusion Coefficients in Commercial Li-Ion Batteries , 2018 .

[24]  Xiulin Fan,et al.  Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries. , 2017, Accounts of chemical research.

[25]  Kevin G. Gallagher,et al.  Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries , 2017 .

[26]  Julien Bernard,et al.  Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging , 2016 .

[27]  A. Gewirth,et al.  Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry. , 2016, Analytical chemistry.

[28]  H. Ehrenberg,et al.  Changes of the balancing between anode and cathode due to fatigue in commercial lithium-ion cells , 2016 .

[29]  Paul R. Shearing,et al.  On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems , 2016 .

[30]  M. Verbrugge,et al.  Experimental and Theoretical Characterization of Electrode Materials That Undergo Large Volume Changes and Application to the Lithium-Silicon System , 2015 .

[31]  Kyung Min Jeong,et al.  Effects of Capacity Ratios between Anode and Cathode on Electrochemical Properties for Lithium Polymer Batteries , 2015 .

[32]  D. Aurbach,et al.  Impedance Spectra of Energy-Storage Electrodes Obtained with Commercial Three-Electrode Cells: Some Sources of Measurement Artefacts , 2014 .

[33]  Martin Ebner,et al.  Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .

[34]  Marion Joulié,et al.  Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries , 2014 .

[35]  M. Anouti,et al.  Comparative study on transport properties for LiFAP and LiPF6 in alkyl-carbonates as electrolytes through conductivity, viscosity and NMR self-diffusion measurements , 2013 .

[36]  Seung M. Oh,et al.  Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries , 2013 .

[37]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[38]  G. de With,et al.  Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder , 2012 .

[39]  M. Verbrugge,et al.  Potentiostatic Intermittent Titration Technique for Electrodes Governed by Diffusion and Interfacial Reaction , 2012 .

[40]  Marshall C. Smart,et al.  Effects of Electrolyte Composition on Lithium Plating in Lithium-Ion Cells , 2011 .

[41]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[42]  Gaurav Jain,et al.  Material and Design Options for Avoiding Lithium Plating during Charging , 2010 .

[43]  Chunsheng Wang,et al.  Galvanostatic Intermittent Titration Technique for Phase-Transformation Electrodes , 2010 .

[44]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[45]  K. Zaghib,et al.  Quantifying tortuosity in porous Li-ion battery materials , 2009 .

[46]  M. Behm,et al.  Electrochemical characterisation and modelling of the mass transport phenomena in LiPF6–EC–EMC electrolyte , 2008 .

[47]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[48]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .

[49]  P. Novák,et al.  Graphites for lithium-ion cells : The correlation of the first-cycle charge loss with the Brunauer-Emmett-Teller surface area , 1998 .

[50]  R. Huggins Transient behavior of insertion reaction electrodes , 1996 .

[51]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[52]  J. K. Srivastava,et al.  Electrical Conductivity of Silicon Dioxide Thermally Grown on Silicon , 1985 .

[53]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[54]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[55]  R. P. Mayer,et al.  Mercury porosimetry—breakthrough pressure for penetration between packed spheres , 1965 .

[56]  H. Gasteiger,et al.  Temperature and Concentration Dependence of the Ionic Transport Properties of Lithium-Ion Battery Electrolytes , 2019, Journal of The Electrochemical Society.

[57]  D. Wheeler,et al.  Quantifying Tortuosity of Porous Li-Ion Battery Electrodes: Comparing Polarization-Interrupt and Blocking-Electrolyte Methods , 2018 .

[58]  Dirk Uwe Sauer,et al.  Full Cell Parameterization of a High-Power Lithium-Ion Battery for a Physico-Chemical Model: Part II. Thermal Parameters and Validation , 2018 .

[59]  M. Ebner,et al.  Tortuosity of Battery Electrodes: Validation of Impedance-Derived Values and Critical Comparison with 3D Tomography , 2018 .

[60]  Martin Winter,et al.  A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries , 2017 .

[61]  Hubert A. Gasteiger,et al.  Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy , 2016 .

[62]  Y. Chiang,et al.  Characterization of Electronic and Ionic Transport in Li1-xNi0.8Co0.15Al0.05O2 (NCA) , 2015 .

[63]  P. Novák,et al.  Important Aspects for Reliable Electrochemical Impedance Spectroscopy Measurements of Li-Ion Battery Electrodes , 2015 .

[64]  D. Sauer,et al.  Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery II. Model Validation , 2015 .

[65]  D. Sauer,et al.  Parameterization of a Physico-Chemical Model of a Lithium-Ion Battery I. Determination of Parameters , 2015 .

[66]  G. Hinds,et al.  Parameter Sensitivity Analysis of Cylindrical LiFePO4 Battery Performance Using Multi-Physics Modeling , 2014 .

[67]  Dennis W. Dees,et al.  Modeling the impedance versus voltage characteristics of LiNi0.8Co0.15Al0.05O2 , 2008 .

[68]  YoungJung Chang,et al.  Electrochemical Impedance Analysis for Lithium Ion Intercalation into Graphitized Carbons , 2000 .

[69]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .