A computational feature binding model of human texture perception

We present a computational model for human texture perception which assigns functional principles to the Gestalt laws of similarity and proximity. Motivated by early vision mechanisms, in the first stage, local texture features are extracted by utilizing multi-scale filtering and nonlinear spatial pooling. In the second stage, features are grouped according to the spatial feature binding model of the competitive layer model (CLM; Wersing et al. 2001). The CLM uses cooperative and competitive interactions in a recurrent network, where binding is expressed by the layer-wise coactivation of feature-representing neurons. The Gestalt law of similarity is expressed by a non-Euclidean distance measure in the abstract feature space with proximity being taken into account by a spatial component. To choose the stimulus dimensions which allow the most salient similarity-based texture segmentation, the feature similarity metrics is reduced to the directions of maximum variance. We show that our combined texture feature extraction and binding model performs segmentation in strong conformity with human perception. The examples range from classical microtextures and Brodatz textures to other classical Gestalt stimuli, which offer a new perspective on the role of texture for more abstract similarity grouping.

[1]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[2]  Adrian Robert,et al.  From Contour Completion to Image Schemas: A Modern Perspective on Gestalt Psychology , 1997 .

[3]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  G. Sperling,et al.  Measuring the spatial frequency selectivity of second-order texture mechanisms , 1995, Vision Research.

[5]  Bedrich J. Hosticka,et al.  A comparison of texture feature extraction using adaptive gabor filtering, pyramidal and tree structured wavelet transforms , 1996, Pattern Recognit..

[6]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[7]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[8]  B. S. Manjunath,et al.  Texture features and learning similarity , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[10]  Peter König,et al.  Binding by temporal structure in multiple feature domains of an oscillatory neuronal network , 1994, Biological Cybernetics.

[11]  J. Bergen,et al.  Texture segregation and orientation gradient , 1991, Vision Research.

[12]  H. Spekreijse,et al.  FigureGround Segregation in a Recurrent Network Architecture , 2002, Journal of Cognitive Neuroscience.

[13]  E. Adelson,et al.  Early vision and texture perception , 1988, Nature.

[14]  Leslie S. Smith,et al.  The principal components of natural images , 1992 .

[15]  Joachim M. Buhmann,et al.  Sensory segmentation with coupled neural oscillators , 1992, Biological Cybernetics.

[16]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[17]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[19]  Victor A. F. Lamme,et al.  Source (or Part of the following Source): Type Article Title Internal State of Monkey Primary Visual Cortex (v1) Predicts Figure Ground Perception Author(s) Internal State of Monkey Primary Visual Cortex (v1) Predicts Figure–ground Perception Materials and Methods , 2022 .

[20]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[21]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[22]  M. R. Turner,et al.  Texture discrimination by Gabor functions , 1986, Biological Cybernetics.

[23]  A B Watson,et al.  Efficiency of a model human image code. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[24]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[25]  Joachim M. Buhmann,et al.  Unsupervised Texture Segmentation in a Deterministic Annealing Framework , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[27]  B. J. A. Kröse,et al.  Local structure analyzers as determinants of preattentive pattern discrimination , 1987, Biological Cybernetics.

[28]  Bernd Jähne,et al.  Digitale Bildverarbeitung (6. Aufl.) , 2005 .

[29]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[30]  S. Grossberg,et al.  A self-organizing neural system for learning to recognize textured scenes , 1999, Vision Research.

[31]  Jianfeng Feng,et al.  Lyapunov Functions for Neural Nets with Nondifferentiable Input-Output Characteristics , 1997, Neural Computation.

[32]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  R. Reid,et al.  Synchronous activity in the visual system. , 1999, Annual review of physiology.

[34]  Shigeru Tanaka,et al.  Spatial pooling in the second-order spatial structure of cortical complex cells , 2000, Vision Research.

[35]  A. Treisman,et al.  Illusory conjunctions in the perception of objects , 1982, Cognitive Psychology.

[36]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[37]  Joachim M. Buhmann,et al.  A Deterministic Annealing Framework for Unsupervised Texture Segmentation , 1996 .

[38]  D. V. van Essen,et al.  Response profiles to texture border patterns in area V1 , 2000, Visual Neuroscience.

[39]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[40]  H. Nothdurft Sensitivity for structure gradient in texture discrimination tasks , 1985, Vision Research.

[41]  Deliang Wang,et al.  Global competition and local cooperation in a network of neural oscillators , 1995 .

[42]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[43]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[44]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[45]  M. Giese Dynamic neural field theory for motion perception , 1998 .

[46]  William E. Higgins,et al.  Texture Segmentation using 2-D Gabor Elementary Functions , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[48]  S. S. Wolfson,et al.  PII: S0042-6989(97)00153-3 , 2003 .

[49]  J. Wolfe,et al.  The Psychophysical Evidence for a Binding Problem in Human Vision , 1999, Neuron.

[50]  Norma Graham,et al.  Nonlinear processes in spatial-frequency channel models of perceived texture segregation: Effects of sign and amount of contrast , 1992, Vision Research.

[51]  Michael S. Landy,et al.  Orthogonal Distribution Analysis: A New Approach to the Study of Texture Perception , 1991 .

[52]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[53]  Heiko Wersing Spatial feature binding and learning in competitive neural layer architectures , 2000 .

[54]  H. C. Nothdurft Different effects from spatial frequency masking in texture segregation and texton detection tasks , 1991, Vision Research.

[55]  John Daugman,et al.  Neural networks for image transformation, analysis, and compression , 1988, Neural Networks.

[56]  Helge Ritter,et al.  A Spatial Approach to Feature Linking , 1990 .

[57]  Heiko Wersing,et al.  A Competitive-Layer Model for Feature Binding and Sensory Segmentation , 2001, Neural Computation.

[58]  D. Sagi,et al.  Gabor filters as texture discriminator , 1989, Biological Cybernetics.

[59]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  J. Bullier,et al.  Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. , 2001, Journal of neurophysiology.

[61]  Rama Chellappa,et al.  A unified approach to boundary perception: edges, textures, and illusory contours , 1993, IEEE Trans. Neural Networks.

[62]  Victor A. F. Lamme,et al.  Neuronal synchrony does not represent texture segregation , 1998, Nature.

[63]  DeLiang Wang,et al.  Texture segmentation using Gaussian-Markov random fields and neural oscillator networks , 2001, IEEE Trans. Neural Networks.

[64]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  Terry Caelli,et al.  On the discrimination of compound Gabor signals and textures , 1988, Vision Research.

[67]  Heiko Wersing,et al.  Fluorescence micrograph segmentation by gestalt-based feature binding , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.