Markov Random Fields with Asymmetric Interactions for Modelling Spatial Context in Structured Scene Labelling

In this paper we propose a Markov random field with asymmetric Markov parameters to model the spatial and topological relationships between objects in structured scenes. The field is formulated in terms of conditional probabilities learnt from a set of training images. A locally consistent labelling of new scenes is achieved by relaxing the Markov random field directly using these conditional probabilities. We evaluate our model on a varied collection of several hundred hand-segmented images of buildings. The incorporation of spatial information is shown to improve greatly the performance of some trivial classifiers.

[1]  Maria Petrou,et al.  Learning in Computer Vision: Some Thoughts , 2007, CIARP.

[2]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  M. Petrou,et al.  Simulating A Digital Business Ecosystem , 2006 .

[4]  Maria Petrou,et al.  Image processing - dealing with texture , 2020 .

[5]  Martial Hebert,et al.  Discriminative random fields: a discriminative framework for contextual interaction in classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[6]  Antonio Criminisi,et al.  TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation , 2006, ECCV.

[7]  Richard S. Zemel,et al.  Learning and Incorporating Top-Down Cues in Image Segmentation , 2006, ECCV.

[8]  Nando de Freitas,et al.  A Statistical Model for General Contextual Object Recognition , 2004, ECCV.

[9]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[11]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[12]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[13]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Zhaoping Li,et al.  Computational Design and Nonlinear Dynamics of a Recurrent Network Model of the Primary Visual Cortex , 2001, Neural Computation.

[15]  Antonio Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, CVPR 2004.

[16]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[17]  Jun Zhang,et al.  A Markov Random Field Model-Based Approach to Image Interpretation , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[19]  José Francisco Martínez-Trinidad,et al.  Progress in Pattern Recognition, Image Analysis and Applications, 12th Iberoamericann Congress on Pattern Recognition, CIARP 2007, Valparaiso, Chile, November 13-16, 2007, Proceedings , 2008, CIARP.

[20]  Z Li,et al.  Visual segmentation by contextual influences via intra-cortical interactions in the primary visual cortex. , 1999, Network.

[21]  M. Bar,et al.  Cortical Analysis of Visual Context , 2003, Neuron.

[22]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.