Noble Gas Atoms Inside Fullerenes

Heating fullerenes at 650°C under 3000 atmospheres of the noble gases helium, neon, argon, krypton, and xenon introduces these atoms into the fullerene cages in about one in 1000 molecules. A “window” mechanism in which one or more of the carbon-carbon bonds of the cage is broken has been proposed to explain the process. The amount of gas inside the fullerenes can be measured by heating to 1000°C to expel the gases, which can then be measured by mass spectroscopy. Information obtained from the nuclear magnetic resonance spectra of helium-3-labeled fullerenes indicates that the magnetic field inside the cage is altered by aromatic ring current effects. Each higher fullerene isomer and each chemical derivative of a fullerene that has been studied so far has given a distinct helium nuclear magnetic resonance peak.

[1]  M. Saunders,et al.  Probing the interior of fullerenes by 3He NMR spectroscopy of endohedral 3He@C60 and 3He@C70 , 1994, Nature.

[2]  D. Bethune,et al.  Isolation and monitoring of the endohedral metallofullerenes YC{sub 82} and Sc{sub 3}C{sub 82}. On-line chromatographic separation with EPR detection , 1994 .

[3]  F. Diederich,et al.  Covalent Fullerene Chemistry , 1996, Science.

[4]  G. Scuseria,et al.  Theoretical Evidence for a C60 "Window" Mechanism , 1994, Science.

[5]  L. Pang,et al.  Endohedral energies and translation of fullerene-noble gas clusters G@Cn (G = helium, neon, argon, krypton and xenon; n = 60 and 70) , 1993 .

[6]  Helmut Schwarz,et al.  The Neutralization of HeC in the Gas Phase: Compelling Evidence for the Existence of an Endohedral Structure for He@C60 , 1992 .

[7]  D. Bethune,et al.  Preparation and structure of crystals of the metallofullerene Sc2@C84 , 1994, Nature.

[8]  R. C. Haddon,et al.  Magnetism of the carbon allotropes , 1995, Nature.

[9]  H. Jiménez-Vázquez,et al.  Hot-atom incorporation of tritium atoms into fullerenes , 1994 .

[10]  S. Anderson,et al.  Ne++C60 collisions: The dynamics of charge and energy transfer, fragmentation, and endohedral complex formation , 1993 .

[11]  Kazuya Saito,et al.  Isolation and characterization of the metallofullerene LaC82 , 1993 .

[12]  H. Jiménez-Vázquez,et al.  Reaction of cyclopropa[b]naphthalene with 3He@C60 , 1994 .

[13]  M. S. de Vries,et al.  Atoms in carbon cages: the structure and properties of endohedral fullerenes , 1993, Nature.

[14]  Helmut Schwarz,et al.  Endohedral fullerene-noble gas clusters formed with high-energy bimolecular reactions of Cxn+ (x=60, 70; n=1,2,3) , 1992 .

[15]  P. Schleyer,et al.  Helium and Lithium NMR Chemical Shifts of Endohedral Fullerene Compounds: An ab Initio Study , 1994 .

[16]  J. Callahan,et al.  Formation and characterization of carbon mol.-helium (C60He+) , 1991 .

[17]  H. Schwarz,et al.  Injection of helium atoms into doubly and triply charged carbon (C60) cations , 1991 .

[18]  M. Saunders,et al.  Chromatographic fractionation of fullerenes containing noble gas atoms , 1996 .

[19]  R. Strongin,et al.  SYNTHESIS AND 3HE NMR STUDIES OF C60 AND C70 EPOXIDE, CYCLOPROPANE, AND ANNULENE DERIVATIVES CONTAINING ENDOHEDRAL HELIUM , 1994 .

[20]  S. C. O'brien,et al.  Lanthanum complexes of spheroidal carbon shells , 1985 .

[21]  H. Schwarz,et al.  Endohedrale Clusterverbindungen : Einbau von Helium in C60.+- und C70.+-Fullerene durch Kollisionsexperimente , 1991 .

[22]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[23]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[24]  W. E. Billups,et al.  Analysis of Isomers of the Higher Fullerenes by 3He NMR Spectroscopy , 1995 .

[25]  D. Bohme,et al.  Ab initio MO calculation on the energy barrier for the penetration of a benzene ring by a helium atom. Model studies for the formation of endohedral He@C60+ complexes by high-energy bimolecular reactions , 1992 .

[26]  J. Callahan,et al.  Molecular Dynamics Simulations and Experimental Studies of the Formation of Endohedral Complexes of Buckminsterfullerene , 1992 .

[27]  Martin Saunders,et al.  Stable Compounds of Helium and Neon: He@C60 and Ne@C60 , 1993, Science.

[28]  M. Gross,et al.  Endohedral Complexes of Fullerene Radical Cations , 1991 .

[29]  Martin Saunders,et al.  Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure , 1994 .

[30]  Helmut Schwarz,et al.  Formation of endohedral carbon-cluster noble-gas compounds with high-energy bimolecular reactions : C60Hen+ (n=1, 2) , 1991 .

[31]  Endohedral and exohedral adsorption in C60: An analytical model , 1993 .

[32]  M. Saunders,et al.  3HE NMR : A POWERFUL NEW TOOL FOR FOLLOWING FULLERENE CHEMISTRY , 1994 .

[33]  H. Schwarz,et al.  The neutralization—reionization mass spectrum of C+60 , 1992 .

[34]  Helmut Schwarz,et al.  Endohedral Cluster Compounds: Inclusion of Helium within C 60•⊕ and C 70•⊕ through Collision Experiments , 1991 .

[35]  S. Anderson,et al.  Ne++C60: Collision energy and impact parameter dependence for endohedral complex formation, fragmentation, and charge transfer , 1992 .

[36]  Michael L. Gross,et al.  High-energy collisions of fullerene radical cations with target gases: capture of the target gas and charge stripping of C60.bul.+, C70.bul.+, and C84.bul.+ , 1992 .