Prostate Cancer Detection via a Quantitative Radiomics-Driven Conditional Random Field Framework

The use of high-volume quantitative radiomics features extracted from multi-parametric magnetic resonance imaging (MP-MRI) is gaining attraction for the autodetection of prostate tumors, since it provides a plethora of mineable data, which can be used for both detection and prognosis of prostate cancer. While current voxel-resolution radiomics-driven prostate tumor detection approaches utilize quantitative radiomics features associated with individual voxels on an independent basis, the incorporation of additional information regarding the spatial and radiomics feature relationships between voxels has significant potential for achieving a more reliable detection performance. Motivated by this, we present a novel approach for automatic prostate cancer detection using a radiomics-driven conditional random field (RD-CRF) framework. In addition to the high-throughput extraction and utilization of a comprehensive set of voxel-level quantitative radiomics features, the proposed RD-CRF framework leverages inter-voxel spatial and radiomics feature relationships to ensure that the autodetected tumor candidates exhibit interconnected tissue characteristics reflective of cancerous tumors. We evaluated the performance of the proposed framework using clinical prostate MP-MRI data of 20 patients, and the results of RD-CRF framework demonstrated a clear improvement with respect to the state-of-the-art in quantitative radiomics for automatic voxel-resolution prostate cancer detection.

[1]  M. Orton,et al.  Robust estimation of the apparent diffusion coefficient (ADC) in heterogeneous solid tumors , 2009, Magnetic resonance in medicine.

[2]  Guillaume Lemaitre,et al.  Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review , 2015, Comput. Biol. Medicine.

[3]  Yair Lotan,et al.  Systematic review of complications of prostate biopsy. , 2013, European urology.

[4]  Monique J. Roobol,et al.  Mortality Results from a Randomized ProstateCancer Screening Trial , 2009 .

[5]  Michael G Jameson,et al.  A review of methods of analysis in contouring studies for radiation oncology , 2010, Journal of medical imaging and radiation oncology.

[6]  Masoom A. Haider,et al.  Dual-stage correlated diffusion imaging , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[7]  Yongyi Yang,et al.  Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI. , 2010, Medical physics.

[8]  Daniel S. Cho,et al.  Prostate DWI co-registration via maximization of hybrid statistical likelihood and cross-correlation for improved ADC and computed ultra-high b-value DWI calculation , 2014 .

[9]  Pushmeet Kohli,et al.  Markov Random Fields for Vision and Image Processing , 2011 .

[10]  Masoom A. Haider,et al.  A Multi-Parametric Diffusion Magnetic Resonance Imaging Texture Feature Model for Prostate Cancer Analysis , 2014 .

[11]  Adam S. Kibel,et al.  Screening and Prostate-Cancer Mortality in a Randomized European Study , 2009 .

[12]  N Karssemeijer,et al.  Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis , 2012, Physics in medicine and biology.

[13]  Monique J. Roobol,et al.  Re: Mortality Results from a Randomized Prostate-Cancer Screening Trial , 2009 .

[14]  Masoom A. Haider,et al.  Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models , 2015, BMC Medical Imaging.

[15]  Marek Kretowski,et al.  Multi-Image Texture Analysis in Classification of Prostatic Tissues from MRI. Preliminary Results , 2014 .

[16]  Hersh Chandarana,et al.  Computed diffusion-weighted imaging of the prostate at 3 T: impact on image quality and tumour detection , 2013, European Radiology.

[17]  Masoom A. Haider,et al.  Multiparametric MRI prostate cancer analysis via a hybrid morphological-textural model , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[18]  Masoom A. Haider,et al.  Correlated diffusion imaging , 2013, BMC Medical Imaging.

[19]  Wendy L. Smith,et al.  Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. , 2007, International journal of radiation oncology, biology, physics.

[20]  H. Schlemmer,et al.  [PI-RADS classification: structured reporting for MRI of the prostate]. , 2013, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[21]  Maryellen L. Giger,et al.  A study of T2-weighted MR image texture features and diffusion-weighted MR image features for computer-aided diagnosis of prostate cancer , 2013, Medical Imaging.

[22]  David Chia,et al.  Mortality results from a randomized prostate-cancer screening trial. , 2009, The New England journal of medicine.

[23]  Patrick Granton,et al.  Radiomics: extracting more information from medical images using advanced feature analysis. , 2012, European journal of cancer.

[24]  J. Fütterer,et al.  ESUR prostate MR guidelines 2012 , 2012, European Radiology.

[25]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[26]  Dimitris N. Metaxas,et al.  Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI , 2005, IEEE Transactions on Medical Imaging.

[27]  Roman Klinger,et al.  Classical Probabilistic Models and Conditional Random Fields , 2007 .

[28]  Xin Liu,et al.  Prostate Cancer Segmentation With Simultaneous Estimation of Markov Random Field Parameters and Class , 2009, IEEE Transactions on Medical Imaging.

[29]  Masoom A. Haider,et al.  MAPS: A Quantitative Radiomics Approach for Prostate Cancer Detection , 2016, IEEE Transactions on Biomedical Engineering.

[30]  Masoom A Haider,et al.  Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. , 2007, AJR. American journal of roentgenology.

[31]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[32]  Masoom A. Haider,et al.  Statistical Textural Distinctiveness in Multi-Parametric Prostate MRI for Suspicious Region Detection , 2015, ICIAR.

[33]  M. Röthke,et al.  PI-RADS-Klassifikation: Strukturiertes Befundungsschema für die MRT der Prostata , 2013, Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren.

[34]  Masoom A. Haider,et al.  Quantitative investigative analysis of tumour separability in the prostate gland using ultra-high b-value computed diffusion imaging , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[35]  Nico Karssemeijer,et al.  Computer-Aided Detection of Prostate Cancer in MRI , 2014, IEEE Transactions on Medical Imaging.

[36]  Max A. Viergever,et al.  Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE) , 2010, IEEE Transactions on Medical Imaging.

[37]  P. Lambin,et al.  Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach , 2014, Nature Communications.

[38]  Olivier Gevaert,et al.  Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data--methods and preliminary results. , 2012, Radiology.

[39]  Masoom A. Haider,et al.  Prostate cancer localization with multispectral MRI based on Relevance Vector Machines , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[40]  Bennett A. Landman,et al.  Characterizing Spatially Varying Performance to Improve Multi-atlas Multi-label Segmentation , 2011, IPMI.

[41]  Masoom A. Haider,et al.  Prostate Cancer Localization With Multispectral MRI Using Cost-Sensitive Support Vector Machines and Conditional Random Fields , 2010, IEEE Transactions on Image Processing.