A near-threshold, multi-node, wireless body area sensor network powered by RF energy harvesting

A wirelessly-powered, near-threshold, body area network SoC supporting synchronized multi-node TDMA operation is demonstrated in 65nm CMOS. A global clock source sent from a base-station wirelessly broadcasts at 434.16MHz to all sensor nodes, where each individual BAN sensor is phase-locked to the base-station clock using a super-harmonic injection-locked frequency divider. Each near-threshold SoC harvests energy from and phase locks to this broadcasted 434.16MHz waveform, eliminating the need for a battery. A Near-VT MICS-band OOK transmitter sends the synchronized local sensor data back to the base-station in its pre-defined TDMA slot. For an energy-harvested local VDD=0.56V, measurements demonstrate full functionality over 1.4m between the base-station and four worn sensors, including two that are NLOS. The sensitivity of the RF energy harvesting and the wireless clock synchronization are measured at -8dBm and -35dBm, respectively. ECG Lead-II/Lead-III waveforms are experimentally captured, demonstrating the end-to-end system application.

[1]  Yong Lian,et al.  A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip , 2009, IEEE Journal of Solid-State Circuits.

[2]  Hoi-Jun Yoo,et al.  A 0.24-nJ/b Wireless Body-Area-Network Transceiver With Scalable Double-FSK Modulation , 2012, IEEE Journal of Solid-State Circuits.

[3]  Brian Otis,et al.  A 90µW MICS/ISM band transmitter with 22% global efficiency , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[4]  Mario Konijnenburg,et al.  A 2.4GHz ULP OOK single-chip transceiver for healthcare applications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[5]  Hoi-Jun Yoo,et al.  A 0.24nJ/b wireless body-area-network transceiver with scalable double-FSK modulation , 2011, 2011 IEEE International Solid-State Circuits Conference.

[6]  Fan Zhang,et al.  A batteryless 19μW MICS/ISM-band energy harvesting body area sensor node SoC , 2012, 2012 IEEE International Solid-State Circuits Conference.

[7]  K. Kotani,et al.  High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs , 2009, IEEE Journal of Solid-State Circuits.

[8]  Mario Konijnenburg,et al.  A 2.4 GHz ULP OOK Single-Chip Transceiver for Healthcare Applications , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[9]  Anantha P. Chandrakasan,et al.  A 110µW 10Mb/s etextiles transceiver for body area networks with remote battery power , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).