Control of Aromatic Acid Biosynthesis in Bacillus subtilis: Sequential Feedback Inhibition

Nester, E. W. (University of Washington, Seattle), and R. A. Jensen. Control of aromatic acid biosynthesis in Bacillus subtilis: sequential feedback inhibition. J. Bacteriol. 91:1594–1598. 1966.—The three major end products of aromatic acid synthesis, tyrosine, phenylalanine, and tryptophan, were tested for their ability to inhibit the first enzymes of the three terminal branches of the pathway as well as the enzyme common to both tyrosine and phenylalanine synthesis. Tyrosine inhibits the activity of prephenate dehydrogenase and also prephenate dehydratase to a limited extent. Phenylalanine inhibits the activity of prephenate dehydratase and, at much higher concentrations, prephenate dehydrogenase. Tryptophan inhibits the activity of anthranilate synthetase and, to some extent, prephenate dehydrogenase and prephenate dehydratase. Chorismate mutase is not inhibited by either 1 mm tyrosine or 1 mm phenylalanine when these are present singly or together in the reaction mixture. The significance of the feedback control of the terminal branches to the feedback control of that part of the pathway common to the synthesis of all three amino acids is discussed.