Novel Approaches to Analyze Immunoglobulin Repertoires.

[1]  P. Leder,et al.  Organization of immunoglobulin genes: reiteration frequency of the mouse kappa chain constant region gene. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Weigert,et al.  Genetic control of antibody variable regions. , 1977, Cold Spring Harbor symposia on quantitative biology.

[3]  D. Hartl,et al.  T-cell receptor beta-chain expression: dependence on relatively few variable region genes. , 1985, Science.

[4]  B. Nadel,et al.  Vλ‐Jλ rearrangements are restricted within a V‐J‐C recombination unit in the mouse , 1991 .

[5]  R. Brezinschek,et al.  Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. , 1995, Journal of immunology.

[6]  L. Herzenberg,et al.  An unbiased analysis of V(H)-D-J(H) sequences from B-1a, B-1b, and conventional B cells. , 1997, Journal of immunology.

[7]  Valérie Barbié,et al.  The Human Immunoglobulin Kappa Variable (IGKV) Genes and Joining (IGKJ) Segments , 1998, Experimental and Clinical Immunogenetics.

[8]  Véronique Giudicelli,et al.  The Human Immunoglobulin Lambda Variable (IGLV) Genes and Joining (IGLJ) Segments , 1998, Experimental and Clinical Immunogenetics.

[9]  Valérie Barbié,et al.  The Human Immunoglobulin Heavy Diversity (IGHD) and Joining (IGHJ) Segments , 1999, Experimental and Clinical Immunogenetics.

[10]  Marie-Paule Lefranc,et al.  The Human Immunoglobulin Heavy Variable Genes , 1999, Experimental and Clinical Immunogenetics.

[11]  M. Nussenzweig,et al.  Predominant Autoantibody Production by Early Human B Cell Precursors , 2003, Science.

[12]  W. Garrard,et al.  Assembly and analysis of the mouse immunoglobulin kappa gene sequence , 2004, Immunogenetics.

[13]  Colette M. Johnston,et al.  Complete Sequence Assembly and Characterization of the C57BL/6 Mouse Ig Heavy Chain V Region1 , 2006, The Journal of Immunology.

[14]  Patrick Wilson,et al.  iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences , 2007, Bioinform..

[15]  Jeffrey J. Gray,et al.  RosettaAntibody: antibody variable region homology modeling server , 2009, Nucleic Acids Res..

[16]  R. White,et al.  High-Throughput Sequencing of the Zebrafish Antibody Repertoire , 2009, Science.

[17]  T. Tiller,et al.  Cloning and expression of murine Ig genes from single B cells. , 2009, Journal of immunological methods.

[18]  Abigail Wacher,et al.  Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. , 2009, Blood.

[19]  J. D. Capra,et al.  Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen , 2009, Nature Protocols.

[20]  Thomas B. Kepler,et al.  SoDA2: a Hidden Markov Model approach for identification of immunoglobulin rearrangements , 2010, Bioinform..

[21]  Ron Diskin,et al.  Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding , 2011, Science.

[22]  S. Linnarsson,et al.  Counting absolute numbers of molecules using unique molecular identifiers , 2011, Nature Methods.

[23]  Jamie K. Scott,et al.  Complete haplotype sequence of the human immunoglobulin heavy-chain variable, diversity, and joining genes and characterization of allelic and copy-number variation. , 2013, American journal of human genetics.

[24]  Stephen R. Quake,et al.  Genetic measurement of memory B-cell recall using antibody repertoire sequencing , 2013, Proceedings of the National Academy of Sciences.

[25]  George Georgiou,et al.  High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire , 2013, Nature Biotechnology.

[26]  R. Emerson,et al.  Using synthetic templates to design an unbiased multiplex PCR assay , 2013, Nature Communications.

[27]  Beatrix Ueberheide,et al.  Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies , 2013, The Journal of experimental medicine.

[28]  Andrew D. Ellington,et al.  Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response , 2013, Proceedings of the National Academy of Sciences.

[29]  Ning Ma,et al.  IgBLAST: an immunoglobulin variable domain sequence analysis tool , 2013, Nucleic Acids Res..

[30]  Jason J. Lavinder,et al.  Systematic Characterization and Comparative Analysis of the Rabbit Immunoglobulin Repertoire , 2014, PloS one.

[31]  J. Galson,et al.  Studying the antibody repertoire after vaccination: practical applications. , 2014, Trends in immunology.

[32]  Irina Czogiel,et al.  Single‐cell based high‐throughput sequencing of full‐length immunoglobulin heavy and light chain genes , 2014, European journal of immunology.

[33]  D. Koller,et al.  High-resolution antibody dynamics of vaccine-induced immune responses , 2014, Proceedings of the National Academy of Sciences.

[34]  Dennis R. Burton,et al.  Toward a more accurate view of human B-cell repertoire by next-generation sequencing, unbiased repertoire capture and single-molecule barcoding , 2014, Scientific Reports.

[35]  S. Quake,et al.  The promise and challenge of high-throughput sequencing of the antibody repertoire , 2014, Nature Biotechnology.

[36]  Mark M Davis,et al.  Linking T-cell receptor sequence to functional phenotype at the single-cell level , 2014, Nature Biotechnology.

[37]  W. Robinson,et al.  Identifying functional anti-Staphylococcus aureus antibodies by sequencing antibody repertoires of patient plasmablasts. , 2014, Clinical immunology.

[38]  David Kipling,et al.  Ageing of the B-cell repertoire , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  Steven H. Kleinstein,et al.  Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data , 2015, Bioinform..

[40]  R. Emerson,et al.  High-throughput pairing of T cell receptor α and β sequences , 2015, Science Translational Medicine.

[41]  Patrick C. Wilson,et al.  Immune history profoundly affects broadly protective B cell responses to influenza , 2015, Science Translational Medicine.

[42]  George Georgiou,et al.  Serology in the 21st century: the molecular-level analysis of the serum antibody repertoire. , 2015, Current opinion in immunology.

[43]  T. Mora,et al.  A Reassessment of IgM Memory Subsets in Humans , 2015, The Journal of Immunology.

[44]  G. Yaari,et al.  Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles , 2015, Proceedings of the National Academy of Sciences.

[45]  Adrian W. Briggs,et al.  Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. , 2015, Integrative biology : quantitative biosciences from nano to macro.

[46]  Hedda Wardemann,et al.  Direct high‐throughput amplification and sequencing of immunoglobulin genes from single human B cells , 2015, European journal of immunology.

[47]  Enkelejda Miho,et al.  Bioinformatic and Statistical Analysis of Adaptive Immune Repertoires. , 2015, Trends in immunology.

[48]  G. Yaari,et al.  Practical guidelines for B-cell receptor repertoire sequencing analysis , 2015, Genome Medicine.

[49]  T. Mora,et al.  Inferring processes underlying B-cell repertoire diversity , 2015, bioRxiv.

[50]  William S. DeWitt,et al.  A Public Database of Memory and Naive B-Cell Receptor Sequences , 2016, PloS one.

[51]  Dennis R. Burton,et al.  Clonify: unseeded antibody lineage assignment from next-generation sequencing data , 2016, Scientific Reports.

[52]  Johannes Trück,et al.  B-cell repertoire dynamics after sequential hepatitis B vaccination and evidence for cross-reactive B-cell activation , 2016, Genome Medicine.

[53]  Takuya Nojima,et al.  Complex Antigens Drive Permissive Clonal Selection in Germinal Centers. , 2016, Immunity.

[54]  George Georgiou,et al.  Ultra-high-throughput sequencing of the immune receptor repertoire from millions of lymphocytes , 2016, Nature Protocols.

[55]  G. B. Karlsson Hedestam,et al.  Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity , 2016, Nature Communications.

[56]  Louise S. Matheson,et al.  Two Mutually Exclusive Local Chromatin States Drive Efficient V(D)J Recombination , 2016, Cell reports.

[57]  Mark M. Davis,et al.  Correction: Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching , 2016, eLife.

[58]  IV FrederickA.Matsen,et al.  Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation , 2015, PLoS Comput. Biol..

[59]  Cornelia L Dekker,et al.  Individual heritable differences result in unique cell lymphocyte receptor repertoires of naïve and antigen-experienced cells , 2016, Nature Communications.

[60]  Anneliese O. Speak,et al.  T cell fate and clonality inference from single cell transcriptomes , 2016, Nature Methods.

[61]  Michael Meyer-Hermann,et al.  Visualizing antibody affinity maturation in germinal centers , 2016, Science.

[62]  Sai T Reddy,et al.  Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting , 2016, Science Advances.

[63]  Yuval Elhanati,et al.  repgenHMM: a dynamic programming tool to infer the rules of immune receptor generation from sequence data , 2015, bioRxiv.

[64]  Cornelia L Dekker,et al.  Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching , 2016, eLife.

[65]  Scott D Boyd,et al.  DJ Pairing during VDJ Recombination Shows Positional Biases That Vary among Individuals with Differing IGHD Locus Immunogenotypes , 2016, The Journal of Immunology.

[66]  Evgeny S. Egorov,et al.  High-quality full-length immunoglobulin profiling with unique molecular barcoding , 2016, Nature Protocols.

[67]  I. Weissman,et al.  Index switching causes “spreading-of-signal” among multiplexed samples in Illumina HiSeq 4000 DNA sequencing , 2017, bioRxiv.

[68]  F. Fraternali,et al.  Promiscuous antibodies characterised by their physico-chemical properties: From sequence to structure and back , 2017, Progress in biophysics and molecular biology.