Graded decorated marked surfaces: Calabi-Yau-$\mathbb{X}$ categories of gentle algebras

Let $\mathbf{S}$ be a graded marked surface. We construct a string model for Calabi-Yau-$\mathbb{X}$ category $\mathcal{D}_\mathbb{X}(\mathbf{S}_\bigtriangleup)$, via the graded DMS (=decorated marked surface) $\mathbf{S}_\Delta$. We prove an isomorphism between the braid twist group of $\mathbf{S}_\bigtriangleup$ and the spherical twist group of $\mathcal{D}_\mathbb{X}(\mathbf{S}_\bigtriangleup)$, and $\mathbf{q}$-intersection formulas. We also give a topological realization of the Lagrangian immersion $\mathcal{D}_\infty(\mathbf{S})\to\mathcal{D}_\mathbb{X}(\mathbf{S}_\bigtriangleup)$, where $\mathcal{D}_\infty(\mathbf{S})$ is the topological Fukaya category associated to $\mathbf{S}$, that is triangle equivalent to the bounded derived category of some graded gentle algebra. This generalizes previous works of [Qiu, Qiu-Zhou] in the Calabi-Yau-3 case and and also unifies the Calabi-Yau-$\infty$ case $\mathcal{D}_\infty(\mathbf{S})$ (cf. [Haiden-Katzarkov-Kontsevich, Opper-Plamondon-Schroll]).

[1]  Quivers , 2021, A Gentle Introduction to Homological Mirror Symmetry.

[2]  A. King,et al.  Cluster exchange groupoids and framed quadratic differentials , 2018, Inventiones mathematicae.

[3]  K. Baur,et al.  A Geometric Model for the Module Category of a Gentle Algebra , 2018, International Mathematics Research Notices.

[4]  A. Polishchuk,et al.  Derived equivalences of gentle algebras via Fukaya categories , 2018, Mathematische Annalen.

[5]  Y. Qiu,et al.  $q$-Stability conditions via $q$-quadratic differentials for Calabi-Yau-$\mathbb{X}$ categories , 2018, 1812.00010.

[6]  Y. Qiu Decorated marked surfaces (part B): topological realizations , 2018 .

[7]  Pierre-Guy Plamondon,et al.  A geometric model for the derived category of gentle algebras , 2018, 1801.09659.

[8]  Y. Qiu,et al.  Decorated marked surfaces II: Intersection numbers and dimensions of Homs , 2014, Transactions of the American Mathematical Society.

[9]  Steffen Oppermann Quivers for silting mutation , 2015, 1504.02617.

[10]  I. Smith Quiver algebras as Fukaya categories , 2013, 1309.0452.

[11]  A. King,et al.  Exchange graphs and Ext quivers , 2011, 1109.2924.

[12]  M. Kontsevich,et al.  Flat surfaces and stability structures , 2014, 1409.8611.

[13]  Y. Qiu Decorated marked surfaces: spherical twists versus braid twists , 2014, 1407.0806.

[14]  I. Smith,et al.  Quadratic differentials as stability conditions , 2013, Publications mathématiques de l'IHÉS.

[15]  Yu Zhou,et al.  Cotorsion pairs in the cluster category of a marked surface , 2012, 1205.1504.

[16]  T. Brustle,et al.  On the cluster category of a marked surface without punctures , 2010, 1005.2422.

[17]  B. Keller,et al.  Deformed Calabi–Yau completions , 2009, 0908.3499.

[18]  B. Keller,et al.  Derived equivalences from mutations of quivers with potential , 2009, 0906.0761.

[19]  D. Thurston,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006, math/0608367.

[20]  Bernhard Keller,et al.  On differential graded categories , 2006, math/0601185.

[21]  M. Khovanov,et al.  Quivers, Floer cohomology, and braid group actions , 2000, math/0006056.

[22]  Richard P. Thomas,et al.  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.

[23]  Bernhard Keller,et al.  Deriving DG categories , 1994 .