Active surface tension driven micropump using droplet/meniscus pressure gradient

[1]  Jeung Sang Go,et al.  A disposable, dead volume-free and leak-free in-plane PDMS microvalve☆ , 2004 .

[2]  Hua-Zhong Yu,et al.  Evaporation of water microdroplets on self-assembled monolayers: from pinning to shrinking. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  M. Chaudhury,et al.  Corona-discharge-induced hydrophobicity loss and recovery of silicones , 1999, 1999 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.99CH36319).

[4]  John Ralston,et al.  Contact angle saturation in electrowetting. , 2005, The journal of physical chemistry. B.

[5]  Babak Ziaie,et al.  A magnetically driven PDMS micropump with ball check-valves , 2005 .

[6]  G. McHale,et al.  Evaporation and the Wetting of a Low-Energy Solid Surface , 1998 .

[7]  Nan-Chyuan Tsai,et al.  Review of MEMS-based drug delivery and dosing systems , 2007 .

[8]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[9]  A. Undar,et al.  A microfluidic device for continuous, real time blood plasma separation. , 2006, Lab on a chip.

[10]  S. Cho,et al.  Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits , 2003 .

[11]  Philippe Dubois,et al.  Actuation potentials and capillary forces in electrowetting based microsystems , 2007 .

[12]  R. G. Picknett,et al.  The evaporation of sessile or pendant drops in still air , 1977 .

[13]  Asim Nisar,et al.  MEMS-based micropumps in drug delivery and biomedical applications , 2008 .

[14]  J. E. Colgate,et al.  Preliminary investigation of micropumping based on electrical control of interfacial tension , 1990, IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots..

[15]  C. Kim,et al.  Surface-tension-driven microactuation based on continuous electrowetting , 2000, Journal of Microelectromechanical Systems.

[16]  M. Kersaudy-Kerhoas,et al.  Hydrodynamic blood plasma separation in microfluidic channels , 2009 .

[17]  M. Desmulliez,et al.  Validation of a blood plasma separation system by biomarker detection. , 2010, Lab on a chip.

[18]  T. Blake The physics of moving wetting lines. , 2006, Journal of colloid and interface science.

[19]  D. Beebe,et al.  PDMS bonding by means of a portable, low-cost corona system. , 2006, Lab on a chip.

[20]  R. Fair,et al.  Electrowetting-based actuation of droplets for integrated microfluidics. , 2002, Lab on a chip.

[21]  P. Fürjes,et al.  Performance characterization of micromachined particle separation system based on Zweifach–Fung effect , 2012 .

[22]  Rafael Tadmor,et al.  Line energy and the relation between advancing, receding, and young contact angles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[23]  R. Fair,et al.  Dynamics of electro-wetting droplet transport , 2002 .

[24]  E. Sollier,et al.  Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices , 2010, Biomedical microdevices.

[25]  Thomas Laurell,et al.  Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. , 2009, Analytical chemistry.

[26]  Y. Fu,et al.  Moving-part-free microfluidic systems for lab-on-a-chip , 2009 .

[27]  Deirdre R. Meldrum,et al.  Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent , 2009, PloS one.

[28]  M. Tabrizian,et al.  Water-oil core-shell droplets for electrowetting-based digital microfluidic devices. , 2008, Lab on a chip.

[29]  J. Samitier,et al.  High flow rate microfluidic device for blood plasma separation using a range of temperatures. , 2010, Lab on a chip.

[30]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[31]  C. Kim,et al.  Electrowetting and electrowetting-on-dielectric for microscale liquid handling , 2002 .

[32]  T. Fujii,et al.  Droplet-based nano/picoliter mixer using hydrophobic microcapillary vent , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[33]  Ulf W. Gedde,et al.  Hydrophobicity Recovery of Polydimethylsiloxane after Exposure to Corona Discharges , 1998 .

[34]  Suresh V. Garimella,et al.  Recent advances in microscale pumping technologies: a review and evaluation , 2008 .

[35]  Tingrui Pan,et al.  Droplet-driven transports on superhydrophobic-patterned surface microfluidics. , 2011, Lab on a chip.

[36]  D. Vu,et al.  Wettability and the evaporation rates of fluids from solid surfaces , 1993 .

[37]  Yu Zhou,et al.  Current micropump technologies and their biomedical applications , 2009 .

[38]  David J Beebe,et al.  Flow rate analysis of a surface tension driven passive micropump. , 2007, Lab on a chip.

[39]  Chong H. Ahn,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Review of Microvalves , 2022 .

[40]  Richard B. Fair,et al.  Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering , 2004 .

[41]  Hyoung Jin Cho,et al.  A micropump controlled by EWOD: wetting line energy and velocity effects. , 2011, Lab on a chip.

[42]  Kwang-Seok Yun,et al.  A micropump driven by continuous electrowetting actuation for low voltage and low power operations , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).