Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion

In systems with cyclic dynamics, invasions often generate periodic spatiotemporal oscillations, which undergo a subsequent transition to chaos. The periodic oscillations have the form of a wavetrain and occur in a band of constant width. In applications, a key question is whether one expects spatiotemporal data to be dominated by regular or irregular oscillations or to involve a significant proportion of both. This depends on the width of the wavetrain band. Here, we present mathematical theory that enables the direct calculation of this width. Our method synthesizes recent developments in stability theory and computation. It is developed for only 1 equation system, but because this is a normal form close to a Hopf bifurcation, the results can be applied directly to a wide range of models. We illustrate this by considering a classic example from ecology: wavetrains in the wake of the invasion of a prey population by predators.

[1]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[2]  N. Marcuvitz,et al.  Electron-stream interaction with plasmas , 1965 .

[3]  N. Kopell,et al.  Horizontal Bands in the Belousov Reaction , 1973, Science.

[4]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[5]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[7]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[8]  Kazuhiro Nozaki,et al.  Pattern selection and spatiotemporal transition to chaos in the Ginzburg-Landau equation , 1983 .

[9]  E. Cohen,et al.  Sound propagation gaps from the navier-stokes equations , 1985 .

[10]  L. Brevdo A study of absolute and convective instabilities with an application to the Eady model , 1988 .

[11]  Victor Steinberg,et al.  Pattern selection and transition to turbulence in propagating waves , 1989 .

[12]  William Gurney,et al.  Population dynamics and element recycling in an aquatic plant-herbivore system , 1991 .

[13]  M. Kot,et al.  Discrete-time travelling waves: Ecological examples , 1992, Journal of mathematical biology.

[14]  P. C. Hohenberg,et al.  Fronts, pulses, sources and sinks in generalized complex Ginzberg-Landau equations , 1992 .

[15]  J. Sherratt The amplitude of periodic plane waves depends on initial conditions in a variety of lambda - omega systems , 1993 .

[16]  Stephen K. Scott,et al.  Oscillations, waves, and chaos in chemical kinetics , 1994 .

[17]  J. Sherratt Irregular wakes in reaction-diffusion waves , 1994 .

[18]  L. Brevdo Convectively Unstable Wave Packets in the Blasius Boundary Layer , 1995 .

[19]  M A Lewis,et al.  Ecological chaos in the wake of invasion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Sherratt Unstable wavetrains and chaotic wakes in reaction-diffusion systems of l-Ω type , 1995 .

[21]  Jonathan A. Snerratt Periodic travelling waves in a family of deterministic cellular automata , 1996 .

[22]  Kenneth Showalter,et al.  Nonlinear Chemical Dynamics: Oscillations, Patterns, and Chaos , 1996 .

[23]  T. Klemola,et al.  Small Mustelid Predation Slows Population Growth of Microtus Voles: A Predator Reduction Experiment , 1997 .

[24]  Veijo Kaitala,et al.  Travelling waves in vole population dynamics , 1997, Nature.

[25]  Jonathan A. Sherratt,et al.  Invading wave fronts and their oscillatory wakes are linked by a modulated travelling phase resetting wave , 1998 .

[26]  David A. Elston,et al.  Spatial asynchrony and periodic travelling waves in cyclic populations of field voles , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  T. Bridges,et al.  Linear pulse structure and signalling in a film flow on an inclined plane , 1999, Journal of Fluid Mechanics.

[28]  Martin van Hecke,et al.  Sources, sinks and wavenumber selection in coupled CGL equations and experimental implications for counter-propagating wave systems , 1999, patt-sol/9902005.

[29]  Alison L. Kay,et al.  On the persistence of spatiotemporal oscillations generated by invasion , 1999 .

[30]  Sergei Petrovskii,et al.  A minimal model of pattern formation in a prey-predator system , 1999 .

[31]  Björn Sandstede,et al.  Absolute and Convective Instabilities of Waves on Unbounded and Large Bounded Domains , 2022 .

[32]  E. Knobloch,et al.  Noise-sustained structures due to convective instability in finite domains , 2000 .

[33]  S. Petrovskii,et al.  Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics. , 2001, Theoretical population biology.

[34]  Martin van Hecke Coherent and Incoherent structures in systems described by the 1D CGLE: Experiments and Identification , 2001 .

[35]  Jonathan A. Sherratt,et al.  Periodic travelling waves in cyclic predator–prey systems , 2001 .

[36]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[37]  Stephen A. Gourley,et al.  Travelling fronts for the KPP equation with spatio-temporal delay , 2002 .

[38]  J A Sherratt,et al.  The Effects of the Size and Shape of Landscape Features on the Formation of Traveling Waves in Cyclic Populations , 2003, The American Naturalist.

[39]  W. Saarloos Front propagation into unstable states , 2003, cond-mat/0308540.

[40]  M. Holyoak,et al.  Complex Population Dynamics: A Theoretical/Empirical Synthesis , 2003 .

[41]  Björn Sandstede,et al.  Defects in Oscillatory Media: Toward a Classification , 2004, SIAM J. Appl. Dyn. Syst..

[42]  Sergei Petrovskii,et al.  Regimes of biological invasion in a predator-prey system with the Allee effect , 2005, Bulletin of mathematical biology.

[43]  David J. W. Simpson,et al.  Complex oscillations and waves of calcium in pancreatic acinar cells , 2005 .

[44]  T. Kofané,et al.  Modulational instability and spatiotemporal transition to chaos , 2006 .

[45]  Sergey A. Suslov,et al.  Numerical aspects of searching convective/absolute instability transition , 2006, J. Comput. Phys..

[46]  D. Elston,et al.  Changes over Time in the Spatiotemporal Dynamics of Cyclic Populations of Field Voles (Microtus agrestis L.) , 2006, The American Naturalist.

[47]  Sergei Petrovskii,et al.  Spatiotemporal patterns in ecology and epidemiology , 2007 .

[48]  Björn Sandstede,et al.  Computing absolute and essential spectra using continuation , 2007 .

[49]  Jonathan A. Sherratt,et al.  The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction–diffusion systems , 2007 .

[50]  Marcus R. Garvie Finite-Difference Schemes for Reaction–Diffusion Equations Modeling Predator–Prey Interactions in MATLAB , 2007, Bulletin of mathematical biology.

[51]  J. Sherratt,et al.  The effects of density-dependent dispersal on the spatiotemporal dynamics of cyclic populations. , 2008, Journal of theoretical biology.

[52]  J. E. Byers,et al.  Five Potential Consequences of Climate Change for Invasive Species , 2008, Conservation biology : the journal of the Society for Conservation Biology.

[53]  R. Ims,et al.  Collapsing population cycles. , 2008, Trends in ecology & evolution.

[54]  Atle Mysterud,et al.  Linking climate change to lemming cycles , 2008, Nature.

[55]  J. Sherratt,et al.  Periodic travelling waves in cyclic populations: field studies and reaction–diffusion models , 2008, Journal of The Royal Society Interface.