Qualitative reasoning about an ecological process: interpretation in hydroecology

Abstract Because of the frequent inefficiency of classical mathematical modelling to help the human operators in the supervision of biological processes, we present here a method based on qualitative reasoning concepts for simulating the interpretation of measurements, analyses, and observations, commonly done on aquatic ecosystems for management purposes. Once the domain variables are identified, their cause-effect dependences are represented as a directed graph. Each variable takes its value in a five-symbol set called quantity space (QS). These symbols … pp, p, m, f, ff…, correspond to expert qualifiers, like respectively: very low, low, medium, high, very high. A synthetic formalism is proposed to encode four types of knowledge rules: (1) translation of the numerical input values (i.e. measurements and results of analyses) into qualitative values; (2) translation of the linguistic observations into qualitative values; (3) formal calculus on QS, using six empirically defined operators, for propagating a top-down form of reasoning throughout the causal network, enabling the determination of the qualitative values of unmeasured variables from the values of their causes; (4) control of the execution of the reasoning. The software prototype, implemented in Prolog, has four main functions: short-term prediction of management parameters, causal explanation of the reasoning, state memorization, and choice of control variables in the causal network. These capabilities are illustrated by examples from an application enabling the interpretation of data in hydroecology. The relevance of a qualitative reasoning approach is emphasized, particularly for making empirical knowledge, typical of biological process control, operational.

[1]  Didier Dubois,et al.  Fuzzy arithmetic in qualitative reasoning , 1989 .

[2]  Douglas T. Ross,et al.  Software design using: SADT , 1977, ACM Annual Conference.

[3]  Bernard Meltzer,et al.  Analogical Representations of Naive Physics , 1989, Artif. Intell..

[4]  M. J. Seixas,et al.  A new method for qualitative simulation of water resources systems: 2. Applications , 1987 .

[5]  Jens Rasmussen,et al.  The role of hierarchical knowledge representation in decisionmaking and system management , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Manuel Duarte Pinheiro,et al.  A new method for qualitative simulation of water resources systems: 1. Theory , 1987 .

[7]  Philippe Caloud Towards Continuous Process Supervision , 1987, IJCAI.

[8]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[9]  Johan de Kleer,et al.  A Qualitative Physics Based on Confluences , 1984, Artif. Intell..

[10]  Olivier Raiman Order of magnitude reasoning , 1986, AAAI 1986.

[11]  Jean-Pierre Changeux,et al.  Matière à pensée , 1990 .

[12]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artif. Intell..

[13]  Alan Bundy,et al.  The use of prolog for improving the rigour and accessibility of ecological modelling , 1989 .

[14]  Donald A. Waterman,et al.  A Guide to Expert Systems , 1986 .

[15]  A. Colmerauer,et al.  Prolog, bases théoriques et développements actuels , 1983 .

[16]  E. M. Hulburt Equivalence and its use , 1989 .

[17]  F. Guerrin Valorisation du zooplancton produit en étangs de lagunage comme base pour l'alimentation de larves et juvéniles de cyprinidés , 1988 .

[18]  Francisco J. Varela,et al.  Autonomie et connaissance : essai sur le vivant , 1989 .

[19]  D. L. Scarnecchia,et al.  Fundamentals of Ecological Modelling , 1995 .

[20]  Philippe Caloud Raisonnement qualitatif : application à l'aide à la supervision des procédés continus. (Qualitative reasoning. An application to computer aided supervision of continuous processes) , 1988 .

[21]  R N Coulson,et al.  Artificial intelligence and natural resource management. , 1987, Science.

[22]  Johan de Kleer,et al.  The Origin, Form, and Logic of Qualitative Physical Laws , 1983, IJCAI.

[23]  John R. Wolfe,et al.  A computer simulation model of the solar-algae pond ecosystem , 1986 .

[24]  Edward J. Rykiel,et al.  Artificial intelligence and expert systems in ecology and natural resource management , 1989 .

[26]  Kenneth D. Forbus Measurement Interpretation in Qualitative Process Theory , 1983, IJCAI.

[27]  D G Bobrow,et al.  Perspectives on Artificial Intelligence Programming , 1986, Science.

[28]  Benjamin Kuipers,et al.  How to Discover a Knowledge Representation for Causal Reasoning by Studying an Expert Physician , 1983, IJCAI.

[29]  William E. Grant,et al.  AN ARTIFICIAL INTELLIGENCE MODELLING APPROACH TO SIMULATING ANIMAL/HABITAT INTERACTIONS , 1988 .