Numerical Continuation of Bifurcations of Limit Cycles in MATLAB

${\rm CL\_MATCONT}$ and MATCONT are MATLAB continuation packages for the interactive numerical study of a range of parameterized nonlinear dynamical systems, in particular ODEs. MATCONT is an interactive graphical package and ${\rm CL\_MATCONT}$ is a commandline version. Both packages allow us to compute curves of equilibria, limit points, Hopf points, limit cycles, flip, fold, and torus bifurcation points of limit cycles. We discuss computational details of the continuation of limit cycles and flip, fold, and torus bifurcations of limit cycles in MATCONT and ${\rm CL\_MATCONT}$ using orthogonal collocation. Instead of the more commonly used fully extended systems we use minimally extended systems. We further describe the use of the MATLAB sparse matrix routines and the initialization and adaptation of the bordering vectors that are essential in minimally extended systems. Finally, we compare the use of the minimally and the fully extended systems in the MATLAB environment.

[1]  Alberto Tesi,et al.  Models of complex dynamics in nonlinear systems , 1995 .

[2]  Alejandro J. Rodríguez-Luis,et al.  A case study for homoclinic chaos in an autonomous electronic circuit: a trip taken from Takens-Bogdanov to Hopf-Sbil'nikov , 1993 .

[3]  Laurette S. Tuckerman,et al.  Numerical methods for bifurcation problems , 2004 .

[4]  Dirk Roose,et al.  Aspects of Continuation Software , 1990 .

[5]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[6]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[7]  Willy Govaerts,et al.  Computation of Periodic Solution Bifurcations in ODEs Using Bordered Systems , 2003, SIAM J. Numer. Anal..

[8]  Alberto Tesi,et al.  On the computation of characteristic multipliers for predicting limit cycle bifurcations , 1998 .

[9]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Alberto Tesi,et al.  Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems , 1992, Autom..

[12]  U. Ascher,et al.  Reformulation of Boundary Value Problems into “Standard” Form , 1981 .

[13]  Willy Govaerts,et al.  Numerical Methods for the Generalized Hopf Bifurcation , 2000, SIAM J. Numer. Anal..

[14]  E. Doedel,et al.  Numerical computation of periodic solution branches and oscillatory dynamics of the stirred tank reactor with A → B → C reactions , 1983 .

[15]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[16]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[17]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[18]  Alberto Tesi,et al.  Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics , 1996, Autom..

[19]  R. Larter,et al.  THE QUASIPERIODIC ROUTE TO CHAOS IN A MODEL OF THE PEROXIDASE-OXIDASE REACTION , 1991 .

[20]  John Guckenheimer,et al.  Computing Periodic Orbits and their Bifurcations with Automatic Differentiation , 2000, SIAM J. Sci. Comput..

[21]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[22]  Robert D. Russell,et al.  Collocation Software for Boundary-Value ODEs , 1981, TOMS.

[23]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[24]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[25]  Willy Govaerts,et al.  Cl_matcont: a continuation toolbox in Matlab , 2003, SAC '03.

[26]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .