Optimal Compensation and Implementation for Adaptive Optics Systems

This paper develops a compensation algorithm based on Linear–Quadratic–Gaussian (LQG) control system design whose parameters are determined (in part) by a model of the atmosphere. The model for the atmosphere is based on the open-loop statistics of the atmosphere as observed by the wavefront sensor, and is identified from these using an auto-regressive, moving average (ARMA) model. The (LQG) control design is compared with an existing compensation algorithm for a simulation developed at ESO that represents the operation of MACAO adaptive optics system on the 8.2 m telescopes at Paranal, Chile.

[1]  J. Conan,et al.  Wave-front temporal spectra in high-resolution imaging through turbulence , 1995 .

[2]  Jose B. Cruz,et al.  Feedback systems , 1971 .

[3]  F Roddier,et al.  Curvature sensing and compensation: a new concept in adaptive optics. , 1988, Applied optics.

[4]  H. Maître,et al.  Estimation of the adaptive optics long-exposure point-spread function using control loop data , 1997 .

[5]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[6]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[7]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[8]  Guang-ming Dai Modal compensation of atmospheric turbulence with the use of Zernike polynomials and Karhunen–Loève functions , 1995 .

[9]  R. Paschall,et al.  Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements. , 1993, Applied optics.

[10]  R. Phillips Reduced order modelling and control of two-time-scale discrete systems† , 1980 .

[11]  E. P. Wallner Optimal wave-front correction using slope measurements , 1983 .

[12]  Andreas Glindemann,et al.  CHARM - A TIP-TILT TERTIARY SYSTEM FOR THE CALAR ALTO 3.5M TELESCOPE , 1997 .

[13]  B. Ellerbroek First-order performance evaluation of adaptive optics systems for atmospheric turbulence compensatio , 1994 .

[14]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[15]  Robert K. Tyson Principles of Adaptive Optics , 1991 .

[16]  G Rousset,et al.  Modal prediction for closed-loop adaptive optics. , 1997, Optics letters.

[17]  G Rousset,et al.  Optimization of a predictive controller for closed-loop adaptive optics. , 1998, Applied optics.

[18]  David L. Fried,et al.  Power spectra requirements for wave-front-compensative systems* , 1976 .

[19]  Andreas Glindemann,et al.  Real-time modal control implementation for adaptive optics. , 1998 .

[20]  Kevin T. C. Jim,et al.  Adaptive Optics Imaging of GG Tauri: Optical Detection of the Circumbinary Ring , 1996 .

[21]  W J Wild Predictive optimal estimators for adaptive-optics systems. , 1996, Optics letters.

[22]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[23]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[24]  Darryl P. Greenwood,et al.  Bandwidth specification for adaptive optics systems , 1977 .

[25]  R. A. Silverman,et al.  Wave Propagation in a Turbulent Medium , 1961 .

[26]  Ngai-Fong Law,et al.  Wavefront estimation at low light levels , 1996 .

[27]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[28]  P. Kokotovic,et al.  Near-optimum design of linear systems by a singular perturbation method , 1969 .