Approximately invariant manifolds and global dynamics of spike states

We investigate the existence of a true invariant manifold given an approximately invariant manifold for an infinite-dimensional dynamical system. We prove that if the given manifold is approximately invariant and approximately normally hyperbolic, then the dynamical system has a true invariant manifold nearby. We apply this result to reveal the global dynamics of boundary spike states for the generalized Allen–Cahn equation.

[1]  Juncheng Wei,et al.  Multi‐Peak Solutions for a Wide Class of Singular Perturbation Problems , 1999 .

[2]  Li Yanyan,et al.  On a singularly perturbed equation with neumann boundary condition , 1998 .

[3]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[4]  Changfeng Gui,et al.  Multiple interior peak solutions for some singularly perturbed neumann problems , 1999 .

[5]  Peter W. Bates,et al.  Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space , 1998 .

[6]  Wei-Ming Ni,et al.  DIFFUSION, CROSS-DIFFUSION, AND THEIR SPIKE-LAYER STEADY STATES , 1998 .

[7]  E. N. Dancer,et al.  Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability , 1999, Advances in Differential Equations.

[8]  C. Gui Multipeak solutions for a semilinear Neumann problem , 1996 .

[9]  Vieri Benci,et al.  Critical point theorems for indefinite functionals , 1979 .

[10]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[11]  Peter W. Bates,et al.  Persistence of Overflowing Manifolds for Semiflow , 1999 .

[12]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[13]  E. Davies,et al.  Spectral Theory and Differential Operators: Index , 1995 .

[14]  M. Shubin,et al.  The Schrödinger Equation , 1991 .

[15]  Y. Oh Existence of Semiclassical Bound States of Nonlinear Schrödinger Equations with Potentials of the Class (V)a , 1988 .

[16]  Juncheng Wei Uniqueness And Eigenvalue Estimates Of Boundary Spike Solutions , 1998 .

[17]  Matthias Winter,et al.  Multiple boundary peak solutions for some singularly perturbed Neumann problems , 2000 .

[18]  Paul H. Rabinowitz,et al.  Homoclinic type solutions for a semilinear elliptic PDE on ℝn , 1992 .

[19]  W. Ni,et al.  On the shape of least‐energy solutions to a semilinear Neumann problem , 1991 .

[20]  Juncheng Wei On the Boundary Spike Layer Solutions to a Singularly Perturbed Neumann Problem , 1997 .

[21]  J. Carr,et al.  Metastable patterns in solutions of ut = ϵ2uxx − f(u) , 1989 .

[22]  E. N. Dancer,et al.  A singularly perturbed elliptic problem in bounded domains with nontrivial topology , 1999, Advances in Differential Equations.

[23]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[24]  Sergey Zelik,et al.  Multi-Pulse Evolution and Space-Time Chaos in Dissipative Systems , 2009 .

[25]  W. Ni,et al.  On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type , 1986 .

[26]  J. Carr,et al.  Invariant manifolds for metastable patterns in ut = ε2uxx—f(u) , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  N. Alikakos,et al.  Critical Points of a Singular Perturbation Problem via Reduced Energy and Local Linking , 1999 .

[28]  M. Kwong,et al.  Uniqueness of the positive solution of $\Delta u+f(u)=0$ in an annulus , 1991, Differential and Integral Equations.

[29]  Adimurthi,et al.  The role of the mean curvature in semilinear neumann problem involving critical exponent , 1995 .

[30]  Peter W. Bates,et al.  Invariant foliations near normally hyperbolic invariant manifolds for semiflows , 2000 .

[31]  W. Ni,et al.  Locating the peaks of least energy solutions to a semilinear Neumann problem , 1993 .

[32]  Shui-Nee Chow,et al.  Smooth Invariant Foliations in Infinite Dimensional Spaces , 1991 .

[33]  T. Ouyang,et al.  EXACT MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF SEMILINEAR PROBLEMS , 1998 .

[34]  P. Bates,et al.  Metastable Patterns for the Cahn-Hilliard Equation, Part I , 1994 .

[35]  Juncheng Wei,et al.  A Nonlocal Eigenvalue Problem and the Stability of Spikes for Reaction-diffusion Systems with fractional Reaction Rates , 2003, Int. J. Bifurc. Chaos.

[36]  Jack K. Hale,et al.  INTEGRAL MANIFOLDS OF PERTURBED DIFFERENTIAL SYSTEMS , 1961 .

[37]  Xuefeng Wang On concentration of positive bound states of nonlinear Schrödinger equations , 1993 .

[38]  Y. Oh On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential , 1990 .

[39]  Changfeng Gui,et al.  On Multiple Mixed Interior and Boundary Peak Solutions for Some Singularly Perturbed Neumann Problems , 2000, Canadian Journal of Mathematics.

[40]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[41]  Adimurthi,et al.  Characterization of concentration points and L∞-estimates for solutions of a semilinear neumann problem involving the critical sobolev exponent , 1995 .

[42]  T. Bartsch,et al.  An invariant set generated by the domain topology for parabolic semiflows with small diffusion , 2007 .

[43]  Juncheng Wei,et al.  On the Role of Mean Curvature in Some Singularly Perturbed Neumann Problems , 1999, SIAM J. Math. Anal..

[44]  Matthias Winter,et al.  Stationary solutions for the Cahn-Hilliard equation , 1998 .

[45]  Zhi Qiang Wang The effect of the domain geometry on the number of positive solutions of Neumann problems with critical exponents , 1995, Differential and Integral Equations.

[46]  E. N. Dancer,et al.  MULTIPEAK SOLUTIONS FOR A SINGULARLY PERTURBED NEUMANN PROBLEM , 1999 .

[47]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[48]  P. Bates,et al.  Existence and instability of spike layer solutions to singular perturbation problems , 2002 .

[49]  M. A. Krasnoselʹskii Topological methods in the theory of nonlinear integral equations , 1968 .

[50]  W. Kyner Invariant Manifolds , 1961 .

[51]  W. Ni,et al.  On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems , 1995 .

[52]  Juncheng Wei Uniqueness and critical spectrum of boundary spike solutions , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[53]  B. Gidas,et al.  Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .

[54]  Wei-Ming Ni,et al.  Large amplitude stationary solutions to a chemotaxis system , 1988 .

[55]  Peter W. Bates,et al.  Slow motion for the Cahn-Hilliard equation in one space dimension , 1991 .

[56]  Peter W. Bates,et al.  Metastable Patterns for the Cahn-Hilliard Equation: Part II. Layer Dynamics and Slow Invariant Manifold , 1995 .

[57]  P. Bates,et al.  Equilibria with Many Nuclei for the Cahn–Hilliard Equation , 2000 .

[58]  F. Pacella,et al.  Interaction between the Geometry of the Boundary and Positive Solutions of a Semilinear Neumann Problem with Critical Nonlinearity , 1993 .

[59]  M. Kowalczyk Multiple spike layers in the shadow Gierer-Meinhardt system: Existence of equilibria and the quasi-invariant manifold , 1999 .

[60]  Alan Weinstein,et al.  Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential , 1986 .

[61]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[62]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[63]  Jack K. Hale,et al.  Slow-motion manifolds, dormant instability, and singular perturbations , 1989 .

[64]  Peter W. Bates,et al.  The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..

[65]  Zhi-Qiang Wang On the existence of multiple, single-peaked solutions for a semilinear Neumann problem , 1992 .