Cryo-EM structure of the β3-adrenergic receptor reveals the molecular basis of subtype selectivity.

[1]  O. Nureki,et al.  Structure of the human secretin receptor coupled to an engineered heterotrimeric G protein. , 2020, Biochemical and biophysical research communications.

[2]  D. E. Nichols,et al.  Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor , 2020, Cell.

[3]  J. Meyerson,et al.  Structural Basis of the Activation of Heterotrimeric Gs-Protein by Isoproterenol-Bound β1-Adrenergic Receptor. , 2020, Molecular cell.

[4]  O. Nureki,et al.  Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimeric G protein , 2019, bioRxiv.

[5]  R. Russell,et al.  Illuminating G-Protein-Coupling Selectivity of GPCRs , 2019, Cell.

[6]  M. Chance,et al.  Assembly of a GPCR-G Protein Complex , 2019, Cell.

[7]  Ron O. Dror,et al.  Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex , 2019, Cell.

[8]  Andrew S Doré,et al.  Molecular basis for high-affinity agonist binding in GPCRs , 2018, Science.

[9]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[10]  R. Dror,et al.  Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist , 2018, Nature Chemical Biology.

[11]  Christopher G Tate,et al.  Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein , 2018, bioRxiv.

[12]  Randy J Read,et al.  Real-space refinement in PHENIX for cryo-EM and crystallography , 2018, bioRxiv.

[13]  Charles L. Brooks,et al.  CHARMM‐GUI ligand reader and modeler for CHARMM force field generation of small molecules , 2017, J. Comput. Chem..

[14]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[15]  J. Lamerdin,et al.  Distinct conformations of GPCR–β-arrestin complexes mediate desensitization, signaling, and endocytosis , 2017, Proceedings of the National Academy of Sciences.

[16]  M. Struthers,et al.  Pharmacological Characterization of a Novel Beta 3 Adrenergic Agonist, Vibegron: Evaluation of Antimuscarinic Receptor Selectivity for Combination Therapy for Overactive Bladder , 2017, The Journal of Pharmacology and Experimental Therapeutics.

[17]  C. Tate,et al.  Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation , 2016, Protein engineering, design & selection : PEDS.

[18]  James M. Wright,et al.  Blood pressure lowering efficacy of beta-1 selective beta blockers for primary hypertension. , 2016, The Cochrane database of systematic reviews.

[19]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[20]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[21]  T. S. Kobilka,et al.  Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling , 2015, Cell.

[22]  G. Choby,et al.  Pharmacotherapy for the treatment of asthma: current treatment options and future directions , 2015, International forum of allergy & rhinology.

[23]  A. J. Venkatakrishnan,et al.  Universal allosteric mechanism for Gα activation by GPCRs , 2015, Nature.

[24]  Stephen M. Husbands,et al.  Structural insights into μ-opioid receptor activation , 2015, Nature.

[25]  Joseph E. Goose,et al.  MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes , 2015, Structure.

[26]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[27]  K. Garcia,et al.  Adrenaline-activated structure of the β2-adrenoceptor stabilized by an engineered nanobody , 2013, Nature.

[28]  M. Babu,et al.  Molecular signatures of G-protein-coupled receptors , 2013, Nature.

[29]  Albert C. Pan,et al.  The Dynamic Process of β2-Adrenergic Receptor Activation , 2013, Cell.

[30]  M. Sasamata,et al.  In vitro and in vivo pharmacological profile of the selective β3-adrenoceptor agonist mirabegron in rats , 2013, Naunyn-Schmiedeberg's Archives of Pharmacology.

[31]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[32]  E. Sacco,et al.  Mirabegron: a review of recent data and its prospects in the management of overactive bladder , 2012, Therapeutic advances in urology.

[33]  M. Cazzola,et al.  Long-Acting β2 Agonists in the Management of Stable Chronic Obstructive Pulmonary Disease , 2000, Drugs.

[34]  Xavier Deupi,et al.  Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II , 2011, Proceedings of the National Academy of Sciences.

[35]  Albert C. Pan,et al.  Activation mechanism of the β2-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[36]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[37]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.

[38]  R. Stevens,et al.  Structure of an Agonist-Bound Human A2A Adenosine Receptor , 2011, Science.

[39]  Christopher G. Tate,et al.  The structural basis for agonist and partial agonist action on a β1-adrenergic receptor , 2010, Nature.

[40]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[41]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[42]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[43]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[44]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[45]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[46]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[47]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[48]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[49]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[50]  M. Sasamata,et al.  Effect of (R)-2-(2-Aminothiazol-4-yl)-4′-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} Acetanilide (YM178), a Novel Selective β3-Adrenoceptor Agonist, on Bladder Function , 2007, Journal of Pharmacology and Experimental Therapeutics.

[51]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[52]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[53]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[54]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[55]  O. Yamaguchi β3-adrenoceptors in human detrusor muscle ☆ , 2002 .

[56]  K. Silver,et al.  Pancreatic beta-cells expressing the Arg64 variant of the beta(3)-adrenergic receptor exhibit abnormal insulin secretory activity. , 2001, Journal of molecular endocrinology.

[57]  M. Morimatsu,et al.  Mutated human beta3-adrenergic receptor (Trp64Arg) lowers the response to beta3-adrenergic agonists in transfected 3T3-L1 preadipocytes. , 2000, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[58]  A. Strosberg,et al.  The biochemical effect of the naturally occurring Trp64-->Arg mutation on human beta3-adrenoceptor activity. , 1997, European journal of biochemistry.

[59]  A. Shuldiner,et al.  The beta3-adrenergic receptor in the obesity and diabetes prone rhesus monkey is very similar to human and contains arginine at codon 64. , 1997, Gene.

[60]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[61]  K. Silver,et al.  A mutation in the beta 3-adrenergic receptor gene is associated with obesity and hyperinsulinemia in Japanese subjects. , 1995, Biochemical and biophysical research communications.

[62]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[63]  K. Clément,et al.  Genetic Variation in the β3-Adrenergic Receptor and an Increased Capacity to Gain Weight in Patients with Morbid Obesity , 1995 .

[64]  C. Bogardus,et al.  Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the beta 3-adrenergic-receptor gene. , 1995, The New England journal of medicine.

[65]  L. Groop,et al.  Association of a polymorphism in the beta 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. , 1995, The New England journal of medicine.

[66]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[67]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[68]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[69]  A. Strosberg,et al.  Molecular characterization of the human beta 3-adrenergic receptor. , 1989, Science.

[70]  A. M. Lands,et al.  Differentiation of Receptor Systems activated by Sympathomimetic Amines , 1967, Nature.

[71]  R. Ahlquist,et al.  A study of the adrenotropic receptors. , 1948, The American journal of physiology.